EXERCISE 7.2

1. Find the coordinates of the point which divides the join of $(-1,7)$ and $(4,-3)$ in the ratio $2: 3$.

Solution:

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be the required point. Using the section formula, we get
$\mathrm{x}=(2 \times 4+3 \times(-1)) /(2+3)=(8-3) / 5=1$
$y=(2 x-3+3 \times 7) /(2+3)=(-6+21) / 5=3$
Therefore, the point is $(1,3)$.
2. Find the coordinates of the points of trisection of the line segment joining (4, -1) and (-2, -3).

Solution:

Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y} 2\right)$ be the points of trisection of the line segment joining the given points, i.e. $\mathrm{AP}=\mathrm{PQ}=\mathrm{QB}$
Therefore, point P divides AB internally in the ratio 1:2.
$\mathrm{x}_{1}=(1 \times(-2)+2 \times 4) / 3=(-2+8) / 3=6 / 3=2$
$y_{1}=(1 \times(-3)+2 \times(-1)) /(1+2)=(-3-2) / 3=-5 / 3$
Therefore: $P\left(x_{1}, y_{1}\right)=P(2,-5 / 3)$
Point Q divides AB internally in the ratio 2:1.
$\mathrm{x}_{2}=(2 \times(-2)+1 \times 4) /(2+1)=(-4+4) / 3=0$
$\mathrm{y}_{2}=(2 \times(-3)+1 \times(-1)) /(2+1)=(-6-1) / 3=-7 / 3$
The coordinates of the point Q are $(0,-7 / 3)$
3. To conduct sports day activities in your rectangular-shaped school ground ABCD , lines have been drawn with chalk powder at a distance of 1 m each. 100 flower pots have been placed at a distance of $1 \mathbf{m}$ from each other along $A D$, as shown in the following figure. Niharika runs $1 / 4$ th the distance $A D$ on the 2 nd line and posts a green flag. Preet runs $1 / 5$ th the distance $A D$ on the eighth line and posts a red flag. What is the distance between both flags? If Rashmi has to post a blue flag exactly halfway between the line segment joining the two flags, where should she post her flag?

Solution:

From the given instruction, we observed that Niharika posted the green flag at $1 / 4^{\text {th }}$ of the distance AD , i.e. $(1 / 4 \times 100)$ $\mathrm{m}=25 \mathrm{~m}$ from the starting point of the 2 nd line. Therefore, the coordinates of this point are $(2,25)$.

Similarly, Preet posted a red flag at $1 / 5$ of the distance $A D$, i.e. $(1 / 5 \times 100) \mathrm{m}=20 \mathrm{~m}$ from the starting point of the 8th line. Therefore, the coordinates of this point are $(8,20)$.

Distance between these flags can be calculated by using the distance formula,

$$
\text { Distance between two flags }=\sqrt{(8-2)^{2}+(20-25)^{2}}=\sqrt{36+25}=\sqrt{61} \mathrm{~m}
$$

The point at which Rashmi should post her blue flag is the mid-point of the line joining these points. Let's say this point is $\mathrm{P}(\mathrm{x}, \mathrm{y})$.
$\mathrm{x}=(2+8) / 2=10 / 2=5$ and $\mathrm{y}=(20+25) / 2=45 / 2$
Hence, $\mathrm{P}(x, y)=(5,45 / 2)$
Therefore, Rashmi should post her blue flag at $45 / 2=22.5 \mathrm{~m}$ on the 5 th line.
4. Find the ratio in which the line segment joining the points $(-3,10)$ and $(6,-8)$ is divided by $(-1,6)$.

Solution:

Consider the ratio in which the line segment joining $(-3,10)$ and $(6,-8)$ is divided by point $(-1,6)$ be $\mathrm{k}: 1$.
Therefore, $-1=(6 k-3) /(k+1)$
$-k-1=6 k-3$
$7 k=2$
$k=2 / 7$
Therefore, the required ratio is $2: 7$.
5. Find the ratio in which the line segment joining $A(1,-5)$ and $B(-4,5)$ is divided by the x-axis. Also, find the coordinates of the point of division.

Solution:

Let the ratio in which the line segment joining $A(1,-5)$ and $B(-4,5)$ is divided by the x-axis be $k: 1$. Therefore, the coordinates of the point of division, say $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is $((-4 k+1) /(k+1),(5 k-5) /(k+1))$.
Or $\mathrm{P}(\mathrm{x}, \mathrm{y})=\frac{-4 k+1}{k+1}, \frac{5 k-5}{k+1}$
We know that the y-coordinate of any point on the x-axis is 0 .
Therefore, $(5 \mathrm{k}-5) /(\mathrm{k}+1)=0$
$5 \mathrm{k}=5$
or $\mathrm{k}=1$
So, the x-axis divides the line segment in the ratio 1:1.
Now, find the coordinates of the point of division:
$\mathrm{P}(\mathrm{x}, \mathrm{y})=((-4(1)+1) /(1+1),(5(1)-5) /(1+1))=(-3 / 2,0)$
6. If $(1,2),(4, y),(x, 6)$ and $(3,5)$ are the vertices of a parallelogram taken in order, find x and y.

Solution:

Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D be the points of a parallelogram: $\mathrm{A}(1,2), \mathrm{B}(4, y), \mathrm{C}(x, 6)$ and $\mathrm{D}(3,5)$.

Since the diagonals of a parallelogram bisect each other, the midpoint is the same.
To find the value of x and y, solve for the midpoint first.
Midpoint of $\mathrm{AC}=((1+\mathrm{x}) / 2,(2+6) / 2)=((1+\mathrm{x}) / 2,4)$
Midpoint of $\mathrm{BD}=((4+3) / 2,(5+\mathrm{y}) / 2)=(7 / 2,(5+\mathrm{y}) / 2)$
The midpoint of AC and BD are the same, this implies
$(1+x) / 2=7 / 2$ and $4=(5+y) / 2$
$x+1=7$ and $5+y=8$
$x=6$ and $y=3$
7. Find the coordinates of point A, where $A B$ is the diameter of a circle whose centre is $(2,-3)$ and B is $(1,4)$.

Solution:

Let the coordinates of point A be (x, y).
Mid-point of AB is $(2,-3)$, which is the centre of the circle.
Coordinate of $\mathrm{B}=(1,4)$

$$
\begin{aligned}
& (2,-3)=((x+1) / 2,(y+4) / 2) \\
& (x+1) / 2=2 \text { and }(y+4) / 2=-3 \\
& x+1=4 \text { and } y+4=-6 \\
& x=3 \text { and } y=-10
\end{aligned}
$$

The coordinates of $\mathrm{A}(3,-10)$.
8. If A and B are $(-2,-2)$ and $(2,-4)$, respectively, find the coordinates of P such that $A P=3 / 7 A B$ and P lies on the line segment $A B$.

Solution:

The coordinates of points A and B are $(-2,-2)$ and $(2,-4)$, respectively.

Since $A P=3 / 7 \mathrm{AB}$
Therefore, $\mathrm{AP}: \mathrm{PB}=3: 4$
Point P divides the line segment AB in the ratio 3:4.
Coordinate of $\mathrm{P}=\left(\frac{3(2)+4(-2)}{3+4}, \frac{3(-4)+4(-2)}{3+4}\right)=\left(\frac{6-8}{7}, \frac{-12-8}{7}\right)=\left(-\frac{2}{7},-\frac{20}{7}\right)$ which is required answer.
9. Find the coordinates of the points which divide the line segment joining $A(-2,2)$ and $B(2,8)$ into four equal parts.

Solution:
Draw a figure, line dividing by 4 points.

From the figure, it can be observed that points X, Y, and Z are dividing the line segment in a ratio $1: 3,1: 1$, and $3: 1$, respectively.
Coordinates of $X=\left(\frac{1(2)+3(-2)}{1+3}, \frac{1(8)+3(2)}{1+3}\right)=(-1,7 / 2)$
Coordinates of $Y=\left(\frac{2(1)-2(1)}{1+1}, \frac{2(1)+8(1)}{1+1}\right)=(0,5)$
Coordinates of $Z=\left(\frac{3(2)+1(-2)}{1+3}, \frac{3(8)+1(2)}{1+3}\right)=(1,13 / 2)$
10. Find the area of a rhombus if its vertices are $(3,0),(4,5),(-1,4)$, and $(-2,-1)$ taken in order.
[Hint: Area of a rhombus = 1/2 (product of its diagonals)

Solution:

Let $\mathrm{A}(3,0), \mathrm{B}(4,5), \mathrm{C}(-1,4)$ and $\mathrm{D}(-2,-1)$ are the vertices of a rhombus ABCD .

Length of diagonal $\mathrm{AC}=\sqrt{\left(3-(-1)^{2}+(0-4)^{2}\right.}=\sqrt{16+16}=4 \sqrt{2}$
Length of diagonal $\mathrm{BD}=\sqrt{\left(4-(-2)^{2}+(5-(-1))^{2}\right.}=\sqrt{36+36}=6 \sqrt{2}$
Therefore, area of rhombus $\mathrm{ABCD}=\frac{1}{2} \times 4 \sqrt{2} \times 6 \sqrt{2}=24$ square units

