EXERCISE 7.3

1. Find the area of the triangle whose vertices are:
(i) $(2,3),(-1,0),(2,-4)$
(ii) $(-5,-1),(3,-5),(5,2)$

Solution:

Area of a triangle formula $=1 / 2 \times\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
(i) Here,
$\mathrm{x}_{1}=2, \mathrm{x}_{2}=-1, \mathrm{x}_{3}=2, \mathrm{y}_{1}=3, \mathrm{y}_{2}=0$ and $\mathrm{y}_{3}=-4$
Substitute all the values in the above formula, we get
Area of triangle $=1 / 2[2\{0-(-4)\}+(-1)\{(-4)-(3)\}+2(3-0)]$
$=1 / 2\{8+7+6\}$
$=21 / 2$
So, the area of the triangle is $21 / 2$ square units.
(ii) Here,
$\mathrm{x}_{1}=-5, \mathrm{x}_{2}=3, \mathrm{x}_{3}=5, \mathrm{y}_{1}=-1, \mathrm{y}_{2}=-5$ and $\mathrm{y}_{3}=2$
Area of the triangle $=1 / 2[-5\{(-5)-(2)\}+3(2-(-1))+5\{-1-(-5)\}]$
$=1 / 2\{35+9+20\}=32$
Therefore, the area of the triangle is 32 square units.
2. In each of the following, find the value of ' k ', for which the points are collinear.
(i) $(7,-2),(5,1),(3,-k)$
(ii) $(8,1),(k,-4),(2,-5)$

Solution:

(i) For collinear points, the area of triangle formed by them is always zero.

Let points $(7,-2),(5,1)$, and $(3, \mathrm{k})$ are vertices of a triangle.
Area of triangle $=1 / 2[7\{1-\mathrm{k}\}+5(\mathrm{k}-(-2))+3\{(-2)-1\}]=0$
$7-7 \mathrm{k}+5 \mathrm{k}+10-9=0$
$-2 \mathrm{k}+8=0$
$\mathrm{k}=4$
(ii) For collinear points, the area of triangle formed by them is zero.

Therefore, for points $(8,1),(k,-4)$, and $(2,-5)$, area $=0$
$1 / 2[8\{-4-(-5)\}+\mathrm{k}\{(-5)-(1)\}+2\{1-(-4)\}]=0$
$8-6 k+10=0$
$6 \mathrm{k}=18$
$\mathrm{k}=3$
3. Find the area of the triangle formed by joining the mid-points of the sides of the triangle whose vertices are (0 , $-1),(2,1)$ and $(0,3)$. Find the ratio of this area to the area of the given triangle.

Solution:

Let the vertices of the triangle be $\mathrm{A}(0,-1), \mathrm{B}(2,1)$, and $\mathrm{C}(0,3)$.
Let D, E, and F be the mid-points of the sides of this triangle.
Coordinates of D, E, and F are given by
$\mathrm{D}=(0+2 / 2,-1+1 / 2)=(1,0)$
$\mathrm{E}=(0+0 / 2,-1+3 / 2)=(0,1)$
$\mathrm{F}=(0+2 / 2,3+1 / 2)=(1,2)$

Area of a triangle $=1 / 2 \times\left[\mathrm{x}_{1}\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)+\mathrm{x}_{2}\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)+\mathrm{x}_{3}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\right]$
Area of $\triangle \mathrm{DEF}=1 / 2\{1(2-1)+1(1-0)+0(0-2)\}=1 / 2(1+1)=1$
The area of $\triangle D E F$ is 1 square unit
Area of $\Delta \mathrm{ABC}=1 / 2[0(1-3)+2\{3-(-1)\}+0(-1-1)]=1 / 2\{8\}=4$
The area of $\triangle \mathrm{ABC}$ is $\mathbf{4}$ square units
Therefore, the required ratio is 1:4.
4. Find the area of the quadrilateral whose vertices, taken in order, are
$(-4,-2),(-3,-5),(3,-2)$ and $(2,3)$.

Solution:

Let the vertices of the quadrilateral be $\mathrm{A}(-4,-2), \mathrm{B}(-3,-5), \mathrm{C}(3,-2)$, and $\mathrm{D}(2,3)$.
Join AC and divide the quadrilateral into two triangles.

We have two triangles, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ACD}$.
Area of a triangle $=1 / 2 \times\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
Area of $\mathbf{\Delta} \mathbf{A B C}=1 / 2[(-4)\{(-5)-(-2)\}+(-3)\{(-2)-(-2)\}+3\{(-2)-(-5)\}]$
$=1 / 2(12+0+9)$
$=21 / 2$ square units
Area of $\mathbf{\Delta A C D}=1 / 2[(-4)\{(-2)-(3)\}+3\{(3)-(-2)\}+2\{(-2)-(-2)\}]$
$=1 / 2(20+15+0)$
$=35 / 2$ square units
Area of quadrilateral $\mathrm{ABCD}=$ Area of $\triangle \mathrm{ABC}+$ Area of $\triangle \mathrm{ACD}$
$=(21 / 2+35 / 2)$ square units $=28$ square units
5. You have studied in Class IX that a median of a triangle divides it into two triangles of equal areas. Verify this result for $\triangle \mathrm{ABC}$, whose vertices are $\mathrm{A}(4,-6), B(3,-2)$ and $C(5,2)$.

Solution:

Let the vertices of the triangle be $\mathrm{A}(4,-6), \mathrm{B}(3,-2)$, and $\mathrm{C}(5,2)$.

Let D be the mid-point of side $B C$ of $\triangle A B C$. Therefore, $A D$ is the median in $\triangle A B C$.
Coordinates of point $\mathrm{D}=$ Midpoint of $\mathrm{BC}=((3+5) / 2,(-2+2) / 2)=(4,0)$
Formula, to find area of a triangle $=1 / 2 \times\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
Now, area of $\mathbf{\Delta} \mathbf{A B D}=1 / 2[(4)\{(-2)-(0)\}+3\{(0)-(-6)\}+(4)\{(-6)-(-2)\}]$
$=1 / 2(-8+18-16)$
$=-3$ square units
However, the area cannot be negative. Therefore, the area of $\triangle \mathrm{ABD}$ is 3 square units.
Area of $\mathbf{\Delta A C D}=1 / 2[(4)\{0-(2)\}+4\{(2)-(-6)\}+(5)\{(-6)-(0)\}]$
$=1 / 2(-8+32-30)=-3$ square units
However, the area cannot be negative. Therefore, the area of $\triangle \mathrm{ACD}$ is 3 square units.
The area of both sides is the same. Thus, median AD has divided $\triangle \mathrm{ABC}$ into two triangles of equal areas.

