EXERCISE 1.6

1. If X and Y are two sets such that $n(X)=17, n(Y)=23$ and $n(X \cup Y)=38$, find $n(X \cap Y)$.

Solution:

Given
$\mathrm{n}(\mathrm{X})=17$
$n(Y)=23$
$n(X \operatorname{U})=38$
We can write it as
$n(X U Y)=n(X)+n(Y)-n(X \cap Y)$
Substituting the values
$38=17+23-n(X \cap Y)$
By further calculation
$n(X \cap Y)=40-38=2$
So we get
$n(X \cap Y)=2$
2. If X and Y are two sets such that $X \cup Y$ has 18 elements, X has 8 elements and Y has 15 elements; how many elements does $X \cap Y$ have?

Solution:

Given
$n(X \operatorname{U})=18$
$n(X)=8$
$n(Y)=15$
We can write it as
$n(X U Y)=n(X)+n(Y)-n(X \cap Y)$
Substituting the values
$18=8+15-\mathrm{n}(\mathrm{X} \cap \mathrm{Y})$
By further calculation
$n(X \cap Y)=23-18=5$
So we get
$n(X \cap Y)=5$
3. In a group of 400 people, 250 can speak Hindi and 200 can speak English. How many people can speak both Hindi and English?

Solution:

Consider H as the set of people who speak Hindi
E as the set of people who speak English
We know that
$n(\mathrm{H} \cup \mathrm{E})=400$
$n(\mathrm{H})=250$
$n(\mathrm{E})=200$
It can be written as
$n(\mathrm{H} \cup \mathrm{E})=n(\mathrm{H})+n(\mathrm{E})-n(\mathrm{H} \cap \mathrm{E})$
By substituting the values
$400=250+200-n(\mathrm{H} \cap \mathrm{E})$
By further calculation
$400=450-n(\mathrm{H} \cap \mathrm{E})$
So we get
$n(\mathrm{H} \cap \mathrm{E})=450-400$
$n(\mathrm{H} \cap \mathrm{E})=50$
Therefore, 50 people can speak both Hindi and English.
4. If S and T are two sets such that S has 21 elements, T has 32 elements, and $S \cap T$ has 11 elements, how many elements does $S \cup T$ have?

Solution:

We know that
$n(S)=21$
$n(\mathrm{~T})=32$
$n(\mathrm{~S} \cap \mathrm{~T})=11$
It can be written as
$n(\mathrm{~S} \cup \mathrm{~T})=n(\mathrm{~S})+n(\mathrm{~T})-n(\mathrm{~S} \cap \mathrm{~T})$
Substituting the values
$n(\mathrm{~S} \cup \mathrm{~T})=21+32-11$
So we get
$n(\mathrm{~S} \cup \mathrm{~T})=42$
Therefore, the set $(S \cup T)$ has 42 elements.
5. If X and Y are two sets such that X has 40 elements, $X \cup Y$ has 60 elements and $X \cap Y$ has 10 elements, how many elements does Y have?

Solution:

We know that
$n(\mathrm{X})=40$
$n(\mathrm{X} \cup \mathrm{Y})=60$
$n(\mathrm{X} \cap \mathrm{Y})=10$
It can be written as
$n(\mathrm{X} \cup \mathrm{Y})=n(\mathrm{X})+n(\mathrm{Y})-n(\mathrm{X} \cap \mathrm{Y})$
By substituting the values
$60=40+n(\mathrm{Y})-10$
On further calculation
$n(\mathrm{Y})=60-(40-10)=30$
Therefore, the set Y has 30 elements.
6. In a group of 70 people, 37 like coffee, 52 like tea, and each person likes at least one of the two drinks. How many people like both coffee and tea?

Solution:

Consider C as the set of people who like coffee
T as the set of people who like tea
$n(\mathrm{C} \cup \mathrm{T})=70$
$n(\mathrm{C})=37$
$n(\mathrm{~T})=52$
It is given that
$n(\mathrm{C} \cup \mathrm{T})=n(\mathrm{C})+n(\mathrm{~T})-n(\mathrm{C} \cap \mathrm{T})$
Substituting the values
$70=37+52-n(\mathrm{C} \cap \mathrm{T})$
By further calculation
$70=89-n(\mathrm{C} \cap \mathrm{T})$
So we get
$n(\mathrm{C} \cap \mathrm{T})=89-70=19$
Therefore, 19 people like both coffee and tea.
7. In a group of 65 people, 40 like cricket, 10 like both cricket and tennis. How many like tennis only and not cricket? How many like tennis?

Solution:

Consider C as the set of people who like cricket
T as the set of people who like tennis
$n(\mathrm{C} \cup \mathrm{T})=65$
$n(C)=40$
$n(\mathrm{C} \cap \mathrm{T})=10$
It can be written as
$n(\mathrm{C} \cup \mathrm{T})=n(\mathrm{C})+n(\mathrm{~T})-n(\mathrm{C} \cap \mathrm{T})$
Substituting the values
$65=40+n(\mathrm{~T})-10$
By further calculation
$65=30+n(\mathrm{~T})$
So we get
$n(\mathrm{~T})=65-30=35$
Hence, 35 people like tennis.
We know that,
$(T-C) \cup(T \cap C)=T$
So we get,
$(\mathrm{T}-\mathrm{C}) \cap(\mathrm{T} \cap \mathrm{C})=\Phi$
Here
$n(\mathrm{~T})=n(\mathrm{~T}-\mathrm{C})+n(\mathrm{~T} \cap \mathrm{C})$
Substituting the values
$35=n(\mathrm{~T}-\mathrm{C})+10$
By further calculation
$n(\mathrm{~T}-\mathrm{C})=35-10=25$
Therefore, 25 people like only tennis.
8. In a committee, 50 people speak French, 20 speak Spanish and 10 speak both Spanish and French. How many speak at least one of these two languages?

Solution:

Consider F as the set of people in the committee who speak French
S as the set of people in the committee who speak Spanish
$n(\mathrm{~F})=50$
$n(\mathrm{~S})=20$
$n(\mathrm{~S} \cap \mathrm{~F})=10$
It can be written as
$n(\mathrm{~S} \cup \mathrm{~F})=n(\mathrm{~S})+n(\mathrm{~F})-n(\mathrm{~S} \cap \mathrm{~F})$
By substituting the values
$n(\mathrm{~S} \cup \mathrm{~F})=20+50-10$
By further calculation
$n(\mathrm{~S} \cup \mathrm{~F})=70-10$
$n(S \cup F)=60$
Therefore, 60 people in the committee speak at least one of the two languages.

