MISCELLANEOUS EXERCISE

1. Find the values of k for which the line $(k-3) x-\left(4-k^{2}\right) y+k^{2}-7 k+6=0$ is
(a) Parallel to the x-axis
(b) Parallel to the y-axis
(c) Passing through the origin

Solution:

It is given that
$(k-3) x-\left(4-k^{2}\right) y+k^{2}-7 k+6=0$
(a) Here, if the line is parallel to the x-axis

Slope of the line $=$ Slope of the x -axis
It can be written as
$\left(4-k^{2}\right) y=(k-3) x+k^{2}-7 k+6=0$
We get
$y=\frac{(k-3)}{\left(4-k^{2}\right)} x+\frac{k^{2}-7 k+6}{\left(4-k^{2}\right)}$
Which is of the form $y=m x+c$
Here the slope of the given line
$=\frac{(k-3)}{\left(4-k^{2}\right)}$
Consider the slope of x -axis $=0$

$$
\frac{(k-3)}{\left(4-k^{2}\right)}=0
$$

By further calculation,
$\mathrm{k}-3=0$
$\mathrm{k}=3$
Hence, if the given line is parallel to the x -axis, then the value of k is 3 .
(b) Here, if the line is parallel to the y-axis, it is vertical, and the slope will be undefined.

So, the slope of the given line
$=\frac{(k-3)}{\left(4-k^{2}\right)}$
Here,
$\frac{(k-3)}{\left(4-k^{2}\right)}$ is undefined at $k^{2}=4$
$k^{2}=4$
$\mathrm{k}= \pm 2$
Hence, if the given line is parallel to the y-axis, then the value of k is ± 2.
(c) Here, if the line is passing through $(0,0)$, which is the origin satisfies the given equation of the line.
$(k-3)(0)-\left(4-k^{2}\right)(0)+k^{2}-7 k+6=0$
By further calculation,
$\mathrm{k}^{2}-7 \mathrm{k}+6=0$
Separating the terms,
$\mathrm{k}^{2}-6 \mathrm{k}-\mathrm{k}+6=0$
We get
$(\mathrm{k}-6)(\mathrm{k}-1)=0$
$\mathrm{k}=1$ or 6
Hence, if the given line is passing through the origin, then the value of k is either 1 or 6 .
2. Find the values of θ and p, if the equation $x \cos \theta+y \sin \theta=p$ is the normal form of the line $\sqrt{ } 3 x+y+2=0$.

Solution:

It is given that
$\sqrt{ } 3 x+y+2=0$
It can be reduced as
$\sqrt{3} x+y+2=0$
$-\sqrt{ } 3 x-y=2$
By dividing both sides by $\sqrt{(-\sqrt{3})^{2}+(-1)^{2}}=2$, we get
$-\frac{\sqrt{3}}{2} x-\frac{1}{2} y=\frac{2}{2}$
It can be written as
$\left(-\frac{\sqrt{3}}{2}\right) x+\left(-\frac{1}{2}\right) y=1$
By comparing equation (1) to $\mathrm{x} \cos \theta+\mathrm{y} \sin \theta=\mathrm{p}$, we get

$$
\cos \theta=-\frac{\sqrt{3}}{2}, \sin \theta=-\frac{1}{2}, \text { and } p=1
$$

Here the values of $\sin \theta$ and $\cos \theta$ are negative
$\theta=\pi+\frac{\pi}{6}=\frac{7 \pi}{6}$
Hence, the respective values of θ and p are $7 \pi / 6$ and 1 .
3. Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are $\mathbf{1}$ and $\mathbf{- 6}$, respectively.

Solution:

Consider the intercepts cut by the given lines on the a and b axes.
$a+b=1$ \qquad
$a b=-6$ \qquad
By solving both equations, we get
$\mathrm{a}=3$ and $\mathrm{b}=-2$ or $\mathrm{a}=-2$ and $\mathrm{b}=3$
We know that the equation of the line whose intercepts on the a and b axes is
$\frac{x}{a}+\frac{y}{b}=1$ or $b x+a y-a b=0$

Case $\mathrm{I}-\mathrm{a}=3$ and $\mathrm{b}=-2$
So, the equation of the line is $-2 x+3 y+6=0$, i.e. $2 x-3 y=6$
Case II $-\mathrm{a}=-2$ and $\mathrm{b}=3$
So, the equation of the line is $3 x-2 y+6=0$, i.e. $-3 x+2 y=6$
Hence, the required equation of the lines are $2 x-3 y=6$ and $-3 x+2 y=6$
4. What are the points on the y-axis whose distance from the line $x / 3+y / 4=1$ is 4 units?

Solution:

Consider $(0, b)$ as the point on the y-axis whose distance from line $x / 3+y / 4=1$ is 4 units.
It can be written as $4 x+3 y-12=0$ \qquad
By comparing equation (1) to the general equation of line $A x+B y+C=0$, we get
$\mathrm{A}=4, \mathrm{~B}=3$ and $\mathrm{C}=-12$
We know that the perpendicular distance (d) of a line $A x+B y+C=0$ from $\left(x_{1}, y_{1}\right)$ is written as
$d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$
If $(0, b)$ is the point on the y-axis whose distance from line $x / 3+y / 4=1$ is 4 units, then
$4=\frac{|4(0)+3(b)-12|}{\sqrt{4^{2}+3^{2}}}$

By further calculation

$$
4=\frac{|3 b-12|}{5}
$$

By cross multiplication,
$20=|3 b-12|$
We get
$20= \pm(3 b-12)$
Here, $20=(3 b-12)$ or $20=-(3 b-12)$
It can be written as
$3 b=20+12$ or $3 b=-20+12$

So, we get
$\mathrm{b}=32 / 3$ or $\mathrm{b}=-8 / 3$
Hence, the required points are $(0,32 / 3)$ and $(0,-8 / 3)$.
5. Find the perpendicular distance from the origin to the line joining the points $(\cos \theta, \sin \theta)$ and $(\cos \phi, \sin \phi)$.

Solution:

Here the equation of the line joining the points $(\cos \theta, \sin \theta)$ and $(\cos \phi, \sin \phi)$ is written as

$$
y-\sin \theta=\frac{\sin \phi-\sin \theta}{\cos \phi-\cos \theta}(x-\cos \theta)
$$

By cross multiplication

$$
y(\cos \phi-\cos \theta)-\sin \theta(\cos \phi-\cos \theta)=x(\sin \phi-\sin \theta)-\cos \theta(\sin \phi-\sin \theta)
$$

By multiplying the terms we get
$x(\sin \theta-\sin \phi)+y(\cos \phi-\cos \theta)+\cos \theta \sin \phi-\cos \theta \sin \theta-\sin \theta \cos \phi+\sin \theta \cos \theta=0$
On further simplification
$x(\sin \theta-\sin \phi)+y(\cos \phi-\cos \theta)+\sin (\phi-\theta)=0$
So we get
$A x+B y+C=0$, where $A=\sin \theta-\sin \phi, B=\cos \phi-\cos \theta$, and $C=\sin (\phi-\theta)$
We know that the perpendicular distance (d) of a line $A x+B y+C=0$ from $\left(x_{1}, y_{1}\right)$ is written as
$d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$
So the perpendicular distance (d) of the given line from $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(0,0)$ is
$d=\frac{|(\sin \theta-\sin \phi)(0)+(\cos \phi-\cos \theta)(0)+\sin (\phi-\theta)|}{\sqrt{(\sin \theta-\sin \phi)^{2}+(\cos \phi-\cos \theta)^{2}}}$
By expanding using formula
$=\frac{|\sin (\phi-\theta)|}{\sqrt{\sin ^{2} \theta+\sin ^{2} \phi-2 \sin \theta \sin \phi+\cos ^{2} \phi+\cos ^{2} \theta-2 \cos \phi \cos \theta}}$
Grouping of terms
$=\frac{|\sin (\phi-\theta)|}{\sqrt{\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+\left(\sin ^{2} \phi+\cos ^{2} \phi\right)-2(\sin \theta \sin \phi+\cos \theta \cos \phi)}}$
By further simplification

$$
=\frac{|\sin (\phi-\theta)|}{\sqrt{1+1-2(\cos (\phi-\theta))}}
$$

Taking out 2 as common
$=\frac{|\sin (\phi-\theta)|}{\sqrt{2(1-\cos (\phi-\theta))}}$
Using the formula
$=\frac{|\sin (\phi-\theta)|}{\sqrt{2\left(2 \sin ^{2}\left(\frac{\phi-\theta}{2}\right)\right)}}$
We get
$=\frac{|\sin (\phi-\theta)|}{\left|2 \sin \left(\frac{\phi-\theta}{2}\right)\right|}$
6. Find the equation of the line parallel to the y-axis and draw through the point of intersection of the lines x $7 y+5=0$ and $3 x+y=0$.

Solution:

Here, the equation of any line parallel to the y-axis is of the form
$\mathrm{x}=\mathrm{a}$
Two given lines are
$x-7 y+5=0$
$3 x+y=0$
By solving equations (2) and (3), we get
$x=-5 / 22$ and $y=15 / 22$
$(-5 / 22,15 / 22)$ is the point of intersection of lines (2) and (3)
If the line $\mathrm{x}=$ a passes through point $(-5 / 22,15 / 22)$, we get $\mathrm{a}=-5 / 22$
Hence, the required equation of the line is $x=-5 / 22$
7. Find the equation of a line drawn perpendicular to the line $x / 4+y / 6=1$ through the point where it meets the y -axis.

Solution:

It is given that
$x / 4+y / 6=1$
We can write it as
$3 x+2 y-12=0$
So, we get
$y=-3 / 2 x+6$, which is of the form $y=m x+c$
Here, the slope of the given line $=-3 / 2$
So, the slope of line perpendicular to the given line $=-1 /(-3 / 2)=2 / 3$
Consider the given line intersects, the y-axis at ($0, \mathrm{y}$)
By substituting x as zero in the equation of the given line,
$y / 6=1$
$y=6$
Hence, the given line intersects the y-axis at $(0,6)$.
We know that the equation of the line that has a slope of $2 / 3$ and passes through the point $(0,6)$ is
$(y-6)=2 / 3(x-0)$
By further calculation,
$3 y-18=2 x$
So, we get
$2 x-3 y+18=0$
Hence, the required equation of the line is $2 x-3 y+18=0$
8. Find the area of the triangle formed by the lines $y-x=0, x+y=0$ and $x-k=0$.

Solution:
It is given that
$y-x=0$ \qquad
$x+y=0$ \qquad
$\mathrm{x}-\mathrm{k}=0$ \qquad
Here, the point of intersection of
Lines (1) and (2) is
$\mathrm{x}=0$ and $\mathrm{y}=0$
Lines (2) and (3) is
$x=k$ and $y=-k$
Lines (3) and (1) is
$\mathrm{x}=\mathrm{k}$ and $\mathrm{y}=\mathrm{k}$
So, the vertices of the triangle formed by the three given lines are $(0,0),(k,-k)$ and (k, k).
Here, the area of triangle whose vertices are $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ is
$1 / 2\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$
So, the area of the triangle formed by the three given lines is
$=1 / 2|0(-k-k)+k(k-0)+k(0+k)|$ square units
By further calculation,
$=1 / 2\left|k^{2}+\mathrm{k}^{2}\right|$ square units
So, we get
$=1 / 2\left|2 \mathrm{k}^{2}\right|$
$=\mathrm{k}^{2}$ square units
9. Find the value of p so that the three lines $3 x+y-2=0, p x+2 y-3=0$ and $2 x-y-3=0$ may intersect at one point.

Solution:

It is given that
$3 x+y-2=0$ \qquad
$p x+2 y-3=0$ \qquad
$2 x-y-3=0$ \qquad
By solving equations (1) and (3), we get
$x=1$ and $y=-1$
Here, the three lines intersect at one point, and the point of intersection of lines (1) and (3) will also satisfy line (2)
$\mathrm{p}(1)+2(-1)-3=0$
By further calculation,
$\mathrm{p}-2-3=0$
So we get
$p=5$
Hence, the required value of p is 5 .
10. If three lines whose equations are $y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ and $y=m_{3} x+c_{3}$ are concurrent, then show that $\mathbf{m}_{1}\left(\mathbf{c}_{2}-\mathbf{c}_{3}\right)+\mathbf{m}_{2}\left(\mathbf{c}_{3}-\mathbf{c}_{1}\right)+\mathbf{m}_{3}\left(\mathbf{c}_{1}-\mathbf{c}_{2}\right)=0$.

Solution:

It is given that
$y=m_{1} x+c_{1}$
$\mathrm{y}=\mathrm{m}_{2} \mathrm{x}+\mathrm{c}_{2}$
$y=m_{3} x+c_{3}$
By subtracting equation (1) from (2), we get
$0=\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right) \mathrm{x}+\left(\mathrm{c}_{2}-\mathrm{c}_{1}\right)$
$\left(m_{1}-m_{2}\right) x=c_{2}-c_{1}$
So we get
$x=\frac{c_{2}-c_{1}}{m_{1}-m_{2}}$
By substituting this value in equation (1) we get

$$
y=m_{1}\left(\frac{c_{2}-c_{1}}{m_{1}-m_{2}}\right)+c_{1}
$$

By multiplying the terms
$y=\frac{m_{1} c_{2}-m_{1} c_{1}}{m_{1}-m_{2}}+c_{1}$
Taking LCM
$y=\frac{m_{1} c_{2}-m_{1} c_{1}+m_{1} c_{1}-m_{2} c_{1}}{m_{1}-m_{2}}$
On further simplification
$y=\frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}$
Here
$\left(\frac{c_{2}-c_{1}}{m_{1}-m_{2}}, \frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}\right)$ is the point of intersection of lines (1) and (2)
Lines (1), (2) and (3) are concurrent. So the point of intersection of lines (1) and (2) will satisfy equation (3)

$$
\frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}=m_{3}\left(\frac{c_{2}-c_{1}}{m_{1}-m_{2}}\right)+c_{3}
$$

By multiplying the terms and taking LCM

$$
\frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}=\frac{m_{3} c_{2}-m_{3} c_{1}+c_{3} m_{1}-c_{3} m_{2}}{m_{1}-m_{2}}
$$

By cross multiplication
$m_{1} c_{2}-m_{2} c_{1}-m_{3} c_{2}+m_{3} c_{1}-c_{3} m_{1}+c_{3} m_{2}=0$
Taking out the common terms,
$\mathrm{m}_{1}\left(\mathrm{c}_{2}-\mathrm{c}_{3}\right)+\mathrm{m}_{2}\left(\mathrm{c}_{3}-\mathrm{c}_{1}\right)+\mathrm{m}_{3}\left(\mathrm{c}_{1}-\mathrm{c}_{2}\right)=0$
Therefore, $m_{1}\left(c_{2}-c_{3}\right)+m_{2}\left(c_{3}-c_{1}\right)+m_{3}\left(c_{1}-c_{2}\right)=0$
11. Find the equation of the lines through the point $(3,2)$, which makes an angle of 45° with the line $x-2 y=3$.

Solution:

Consider m_{1} as the slope of the required line
It can be written as
$y=1 / 2 x-3 / 2$ which is of the form $y=m x+c$
So, the slope of the given line $m_{2}=1 / 2$
We know that the angle between the required line and line $x-2 y=3$ is 45°
If θ is the acute angle between lines 1_{1} and l_{2} with slopes m_{1} and m_{2}.
$\tan \theta=\left|\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right|$
We get
$\tan 45^{\circ}=\frac{\left|m_{1}-m_{2}\right|}{1+m_{1} m_{2}}$
Substituting the values
$1=\left|\frac{\frac{1}{2}-m_{1}}{1+\frac{m_{1}}{2}}\right|$
By taking LCM
$1=\left|\frac{\left(\frac{1-2 m_{1}}{2}\right)}{\frac{2+m_{1}}{2}}\right|$

On further calculation

$1=\left|\frac{1-2 m_{1}}{2+m_{1}}\right|$
We get
$1= \pm\left(\frac{1-2 m_{1}}{2+m_{1}}\right)$

Here

$$
1=\frac{1-2 m_{1}}{2+m_{1}} \text { or } 1=-\left(\frac{1-2 m_{1}}{2+m_{1}}\right)
$$

It can be written as
$2+m_{1}=1-2 m_{1}$ or $2+m_{1}=-1+2 m_{1}$
$m_{1}=-1 / 3$ or $m_{1}=3$
Case I $-\mathrm{m}_{1}=3$
Here, the equation of the line passing through $(3,2)$ and having a slope 3 is
$\mathrm{y}-2=3(\mathrm{x}-3)$
By further calculation,
$y-2=3 x-9$
So, we get
$3 x-y=7$
Case II $-m_{1}=-1 / 3$
Here, the equation of the line passing through $(3,2)$ and having a slope $-1 / 3$ is
$y-2=-1 / 3(x-3)$
By further calculation,
$3 y-6=-x+3$
So, we get
$x+3 y=9$
Hence, the equations of the lines are $3 x-y=7$ and $x+3 y=9$
12. Find the equation of the line passing through the point of intersection of the lines $4 x+7 y-3=0$ and $2 x-$ $3 y+1=0$ that has equal intercepts on the axes.

Solution:

Consider the equation of the line having equal intercepts on the axes as
$x / a+y / a=1$
It can be written as
$x+y=a$ \qquad
By solving equations $4 x+7 y-3=0$ and $2 x-3 y+1=0$, we get
$x=1 / 13$ and $y=5 / 13$
($1 / 13,5 / 13$) is the point of intersection of two given lines.
We know that equation (1) passes through the point $(1 / 13,5 / 13)$.
$1 / 13+5 / 13=\mathrm{a}$
$a=6 / 13$
So, equation (1) passes through ($1 / 13,5 / 13$).
$1 / 13+5 / 13=a$
We get
$a=6 / 13$
Her, equation (1) becomes
$x+y=6 / 13$
$13 x+13 y=6$
Hence, the required equation of the line is $13 x+13 y=6$
13. Show that the equation of the line passing through the origin and making an angle θ with the line $\mathbf{y}=\mathrm{mx}+\mathrm{c}$ is $\frac{y}{x}=\frac{m \pm \tan \theta}{1 \mp m \tan \theta}$.

Solution:

Consider $\mathrm{y}=\mathrm{m}_{1} \mathrm{x}$ as the equation of the line passing through the origin

It is given that the line makes an angle θ with line $y=m x+c$, then angle θ is written as
$\tan \theta=\left|\frac{\mathrm{m}_{1}-\mathrm{m}}{1+\mathrm{m}_{1} \mathrm{~m}}\right|$
By substituting the values
$\tan \theta=\left|\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}\right|$
We get
$\tan \theta= \pm\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}\right)$
Here
$\tan \theta=\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}$ or $\tan \theta=-\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}\right)$
Case I-
$\tan \theta=\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}$
We can write it as
$\tan \theta+\frac{y}{x} m \tan \theta=\frac{y}{x}-m$
By further simplification
$\mathrm{m}+\tan \theta=\frac{\mathrm{y}}{\mathrm{x}}(1-\mathrm{m} \tan \theta)$
So we get
$\frac{\mathrm{y}}{\mathrm{x}}=\frac{\mathrm{m}+\tan \theta}{1-\mathrm{m} \tan \theta}$
Case II -
$\tan \theta=-\left(\frac{\frac{y}{x}-m}{1+\frac{y}{x} m}\right)$
We can write it as
$\tan \theta+\frac{\mathrm{y}}{\mathrm{x}} \mathrm{m} \tan \theta=-\frac{\mathrm{y}}{\mathrm{x}}+\mathrm{m}$
By further simplification
$\frac{\mathrm{y}}{\mathrm{x}}(1+\mathrm{m} \tan \theta)=\mathrm{m}-\tan \theta$
So we get
$\frac{\mathrm{y}}{\mathrm{x}}=\frac{\mathrm{m}-\tan \theta}{1+\mathrm{m} \tan \theta}$
Hence, the required line is given by
$\frac{\mathrm{y}}{\mathrm{x}}=\frac{\mathrm{m} \pm \tan \theta}{1 \mp \mathrm{~m} \tan \theta}$
14. In what ratio, the line joining $(-1,1)$ and $(5,7)$ is divided by the line $x+y=4$?

Solution:

We know that the equation of the line joining the points $(-1,1)$ and $(5,7)$ is given by
$y-1=\frac{7-1}{5+1}(x+1)$
By further calculation
$y-1=\frac{6}{6}(x+1)$
So we get
$x-y+2=0$ \qquad
So the equation of the given line is
$x+y-4=0$ \qquad
Here the point of intersection of lines (1) and (2) is given by
$\mathrm{x}=1$ and $\mathrm{y}=3$
Consider $(1,3)$ divide the line segment joining $(-1,1)$ and $(5,7)$ in the ratio $1: k$.
Using the section formula

$$
(1,3)=\left(\frac{k(-1)+1(5)}{1+k}, \frac{k(1)+1(7)}{1+k}\right)
$$

By further calculation
$(1,3)=\left(\frac{-k+5}{1+k}, \frac{k+7}{1+k}\right)$
So we get
$\frac{-k+5}{1+k}=1, \frac{k+7}{1+k}=3$
We can write it as
$\frac{-k+5}{1+k}=1$
By cross multiplication,
$-\mathrm{k}+5=1+\mathrm{k}$
We get
$2 \mathrm{k}=4$
$\mathrm{k}=2$

Hence, the line joining the points $(-1,1)$ and $(5,7)$ is divided by the line $\mathrm{x}+\mathrm{y}=4$ in the ratio 1:2.
15. Find the distance of the line $4 x+7 y+5=0$ from the point $(1,2)$ along the line $2 x-y=0$.

Solution:

It is given that
$2 x-y=0$ \qquad
$4 x+7 y+5=0$ \qquad
Here, $\mathrm{A}(1,2)$ is a point on the line (1).
Consider B as the point of intersection of lines (1) and (2).

By solving equations (1) and (2), we get $x=-5 / 18$ and $y=-5 / 9$
So, the coordinates of point B are $(-5 / 18,-5 / 9)$.
From the distance formula, the distance between A and B
$\mathrm{AB}=\sqrt{\left(1+\frac{5}{18}\right)^{2}+\left(2+\frac{5}{9}\right)^{2}}$ units
By taking LCM
$=\sqrt{\left(\frac{23}{18}\right)^{2}+\left(\frac{23}{9}\right)^{2}}$ units
It can be written as
$=\sqrt{\left(\frac{23}{2 \times 9}\right)^{2}+\left(\frac{23}{9}\right)^{2}}$ units
So we get
$=\sqrt{\left(\frac{23}{9}\right)^{2}\left(\frac{1}{2}\right)^{2}+\left(\frac{23}{9}\right)^{2}}$ units
By taking the common terms out
$=\sqrt{\left(\frac{23}{9}\right)^{2}\left(\frac{1}{4}+1\right)}$ units
We get
$=\frac{23}{9} \sqrt{\frac{5}{4}}$ units
$=\frac{23}{9} \times \frac{\sqrt{5}}{2}$ units
So we get
$=\frac{23 \sqrt{5}}{18}$ units
Hence, the required distance is
$\frac{23 \sqrt{5}}{18}$ units.
16. Find the direction in which a straight line must be drawn through the point $(-1,2)$ so that its point of intersection with the line $x+y=4$ may be at a distance of 3 units from this point.

Solution:

Consider $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ as the line passing through the point $(-1,2)$.

So, we get
$2=m(-1)+c$
By further calculation,
$2=-m+c$
$c=m+2$

Substituting the value of c
$y=m x+m+2$ \qquad
So the given line is
$x+y=4$ \qquad
By solving both equations, we get
$x=\frac{2-m}{m+1}$ and $y=\frac{5 m+2}{m+1}$
$\left(\frac{2-m}{m+1}, \frac{5 m+2}{m+1}\right)$ is the point of intersection of lines (1) and (2)
Here the point is at a distance of 3 units from ($-1,2$)
From distance formula

$$
\sqrt{\left(\frac{2-m}{m+1}+1\right)^{2}+\left(\frac{5 m+2}{m+1}-2\right)^{2}}=3
$$

Squaring on both sides

$$
\left(\frac{2-m+m+1}{m+1}\right)^{2}+\left(\frac{5 m+2-2 m-2}{m+1}\right)^{2}=3^{2}
$$

By further calculation
$\frac{9}{(m+1)^{2}}+\frac{9 m^{2}}{(m+1)^{2}}=9$
Dividing the equation by 9
$\frac{1+m^{2}}{(m+1)^{2}}=1$
By cross multiplication,
$1+m^{2}=m^{2}+1+2 m$

So, we get
$2 \mathrm{~m}=0$
$\mathrm{m}=0$

Hence, the slope of the required line must be zero, i.e., the line must be parallel to the x-axis.
17. The hypotenuse of a right-angled triangle has its ends at points $(1,3)$ and $(-4,1)$. Find the equation of the legs (perpendicular sides) of the triangle.

Solution:

Consider ABC as the right angles triangle where $\angle \mathrm{C}=90^{\circ}$
Here, infinity such lines are present.
m is the slope of $A C$
So, the slope of $B C=-1 / m$
Equation of AC -
$y-3=m(x-1)$
By cross multiplication,
$x-1=1 / m(y-3)$
Equation of BC -
$y-1=-1 / m(x+4)$
By cross multiplication,
$x+4=-m(y-1)$
By considering the values of m, we get
If $\mathrm{m}=0$,
So, we get
$y-3=0, x+4=0$
If $\mathrm{m}=\infty$,
So, we get
$x-1=0, y-1=0$ we get $x=1, y=1$
18. Find the image of the point $(3,8)$ with respect to the line $x+3 y=7$, assuming the line to be a plane mirror.

Solution:

It is given that
$x+3 y=7$
Consider $\mathrm{B}(\mathrm{a}, \mathrm{b})$ as the image of point $\mathrm{A}(3,8)$.
So line (1) is the perpendicular bisector of AB .

Here
Slope of $\mathrm{AB}=\frac{b-8}{a-3}$
slope of line $(1)=-\frac{1}{3}$
Line (1) is perpendicular to $A B$
$\left(\frac{b-8}{a-3}\right) \times\left(-\frac{1}{3}\right)=-1$
By further calculation
$\frac{b-8}{3 a-9}=1$
By cross multiplication
$b-8=3 a-9$
$3 \mathrm{a}-\mathrm{b}=1$
We know that
Mid-point of $\mathrm{AB}=\left(\frac{a+3}{2}, \frac{b+8}{2}\right)$
So the mid-point of line segment $A B$ will satisfy line (1)
From equation (1)
$\left(\frac{a+3}{2}\right)+3\left(\frac{b+8}{2}\right)=7$
By further calculation
$a+3+3 b+24=14$
On further simplification,
$a+3 b=-13$
By solving equations (2) and (3), we get
$\mathrm{a}=-1$ and $\mathrm{b}=-4$
Hence, the image of the given point with respect to the given line is $(-1,-4)$.
19. If the lines $y=3 x+1$ and $2 y=x+3$ are equally inclined to the line $y=m x+4$, find the value of m.

Solution:

It is given that
$y=3 x+1$
$2 y=x+3$
$y=m x+4$
Here, the slopes of
Line (1), $\mathrm{m}_{1}=3$
Line (2), $\mathrm{m}_{2}=1 / 2$
Line (3), $\mathrm{m}_{3}=\mathrm{m}$
We know that lines (1) and (2) are equally inclined to line (3), which means that the angle between lines (1) and (3) equals the angle between lines (2) and (3).
$\left|\frac{m_{1}-m_{3}}{1+m_{1} m_{3}}\right|=\left|\frac{m_{2}-m_{3}}{1+m_{2} m_{3}}\right|$
Substituting the values we get
$\left|\frac{3-m}{1+3 m}\right|=\left|\frac{\frac{1}{2}-m}{1+\frac{1}{2} m}\right|$
By taking LCM
$\left|\frac{3-m}{1+3 m}\right|=\left|\frac{1-2 m}{m+2}\right|$
It can be written as
$\frac{3-m}{1+3 m}= \pm\left(\frac{1-2 m}{m+2}\right)$

Here

$\frac{3-m}{1+3 m}=\frac{1-2 m}{m+2}$ or $\frac{3-m}{1+3 m}=-\left(\frac{1-2 m}{m+2}\right)$
If
$\frac{3-m}{1+3 m}=\frac{1-2 m}{m+2}$
By cross multiplication
$(3-m)(m+2)=(1-2 m)(1+3 m)$

On further calculation,
$-m^{2}+m+6=1+m-6 m^{2}$
So, we get
$5 m^{2}+5=0$
Dividing the equation by 5 ,
$\mathrm{m}^{2}+1=0$
$\mathrm{m}=\sqrt{ }-1$, which is not real.
Therefore, this case is not possible.
If
$\frac{3-m}{1+3 m}=-\left(\frac{1-2 m}{m+2}\right)$
By cross multiplication
$(3-m)(m+2)=-(1-2 m)(1+3 m)$
On further calculation
$-m^{2}+m+6=-\left(1+m-6 m^{2}\right)$
So we get
$7 \mathrm{~m}^{2}-2 \mathrm{~m}-7=0$
Here we get

$$
m=\frac{2 \pm \sqrt{4-4(7)(-7)}}{2(7)}
$$

By further simplification

$$
m=\frac{2 \pm 2 \sqrt{1+49}}{14}
$$

We can write it as

$$
m=\frac{1 \pm 5 \sqrt{2}}{7}
$$

Hence, the required value of m is

$$
\frac{1 \pm 5 \sqrt{2}}{7}
$$

20. If the sum of the perpendicular distances of a variable point $P(x, y)$ from the lines $x+y-5=0$ and $3 x-2 y+$ $7=0$ is always 10 . Show that P must move on a line.

Solution:

It is given that
$x+y-5=0$
$3 \mathrm{x}-2 \mathrm{y}+7=0$
Here the perpendicular distances of $P(x, y)$ from lines (1) and (2) are written as

$$
d_{1}=\frac{|x+y-5|}{\sqrt{(1)^{2}+(1)^{2}}} \text { and } d_{2}=\frac{|3 x-2 y+7|}{\sqrt{(3)^{2}+(-2)^{2}}}
$$

So we get

$$
d_{1}=\frac{|x+y-5|}{\sqrt{2}} \text { and } d_{2}=\frac{|3 x-2 y+7|}{\sqrt{13}}
$$

We know that $\mathrm{d}_{1}+\mathrm{d}_{2}=10$
Substituting the values

$$
\frac{|x+y-5|}{\sqrt{2}}+\frac{|3 x-2 y+7|}{\sqrt{13}}=10
$$

By further calculation

$$
\sqrt{13}|x+y-5|+\sqrt{2}|3 x-2 y+7|-10 \sqrt{26}=0
$$

It can be written as

$$
\sqrt{13}(x+y-5)+\sqrt{2}(3 x-2 y+7)-10 \sqrt{26}=0
$$

Now by assuming $(x+y-5)$ and $(3 x-2 y+7)$ are positive

$$
\sqrt{13} x+\sqrt{13} y-5 \sqrt{13}+3 \sqrt{2} x-2 \sqrt{2} y+7 \sqrt{2}-10 \sqrt{26}=0
$$

Taking out the common terms

$$
x(\sqrt{13}+3 \sqrt{2})+y(\sqrt{13}-2 \sqrt{2})+(7 \sqrt{2}-5 \sqrt{13}-10 \sqrt{26})=0, \text { which is the equation of a line. }
$$

In the same way, we can find the equation of the line for any signs of $(x+y-5)$ and $(3 x-2 y+7)$
Hence, point P must move on a line.
21. Find the equation of the line which is equidistant from parallel lines $9 x+6 y-7=0$ and $3 x+2 y+6=0$.

Solution:

It is given that
$9 x+6 y-7=0$
$3 \mathrm{x}+2 \mathrm{y}+6=0$
Consider $P(h, k)$ be the arbitrary point that is equidistant from lines (1) and (2)
Here the perpendicular distance of $P(h, k)$ from line (1) is written as
$d_{1}=\frac{|9 h+6 k-7|}{(9)^{2}+(6)^{2}}=\frac{|9 h+6 k-7|}{\sqrt{117}}=\frac{|9 h+6 k-7|}{3 \sqrt{13}}$
Similarly the perpendicular distance of $P(h, k)$ from line (2) is written as
$d_{2}=\frac{|3 h+2 k+6|}{\sqrt{(3)^{2}+(2)^{2}}}=\frac{|3 h+2 k+6|}{\sqrt{13}}$
We know that $P(h, k)$ is equidistant from lines (1) and (2) $d_{l}=d_{2}$
Substituting the values

$$
\frac{|9 h+6 k-7|}{3 \sqrt{13}}=\frac{|3 h+2 k+6|}{\sqrt{13}}
$$

By further calculation
$|9 h+6 k-7|=3|3 h+2 k+6|$
It can be written as
$|9 h+6 k-7|= \pm 3(3 h+2 k+6)$
Here,
$9 \mathrm{~h}+6 \mathrm{k}-7=3(3 \mathrm{~h}+2 \mathrm{k}+6)$ or $9 \mathrm{~h}+6 \mathrm{k}-7=-3(3 \mathrm{~h}+2 \mathrm{k}+6)$
$9 \mathrm{~h}+6 \mathrm{k}-7=3(3 \mathrm{~h}+2 \mathrm{k}+6)$ is not possible as
$9 \mathrm{~h}+6 \mathrm{k}-7=3(3 \mathrm{~h}+2 \mathrm{k}+6)$
By further calculation,
$-7=18$ (which is wrong)
We know that
$9 \mathrm{~h}+6 \mathrm{k}-7=-3(3 \mathrm{~h}+2 \mathrm{k}+6)$
By multiplication,
$9 \mathrm{~h}+6 \mathrm{k}-7=-9 \mathrm{~h}-6 \mathrm{k}-18$

We get
$18 \mathrm{~h}+12 \mathrm{k}+11=0$

Hence, the required equation of the line is $18 x+12 y+11=0$
22. A ray of light passing through the point $(1,2)$ reflects on the x-axis at point A, and the reflected ray passes through the point (5, 3). Find the coordinates of A.

Solution:

Consider the coordinates of point A as $(a, 0)$.
Construct a line (AL) which is perpendicular to the x -axis.
Here, the angle of incidence is equal to the angle of reflection
$\angle \mathrm{BAL}=\angle \mathrm{CAL}=\Phi$
$\angle \mathrm{CAX}=\theta$

It can be written as
$\angle \mathrm{OAB}=180^{\circ}-(\theta+2 \Phi)=180^{\circ}-\left[\theta+2\left(90^{\circ}-\theta\right)\right]$
On further calculation,
$=180^{\circ}-\theta-180^{\circ}+2 \theta$
$=\theta$

So, we get
$\angle \mathrm{BAX}=180^{\circ}-\theta$
slope of line $\mathrm{AC}=\frac{3-0}{5-a}$
$\tan \theta=\frac{3}{5-a}$
Slope of line $\mathrm{AB}=\frac{2-0}{1-a}$
We get
$\tan \left(180^{\circ}-\theta\right)=\frac{2}{1-a}$
By further calculation

$$
\begin{align*}
& -\tan \theta=\frac{2}{1-a} \\
& \tan \theta=\frac{2}{a-1} \tag{2}
\end{align*}
$$

From equations (1) and (2) we get
$\frac{3}{5-a}=\frac{2}{a-1}$
By cross multiplication,
$3 a-3=10-2 a$
We get
$a=13 / 5$
Hence, the coordinates of point A are $(13 / 5,0)$.
23. Prove that the product of the lengths of the perpendiculars drawn from
points $\left(\sqrt{a^{2}-b^{2}}, 0\right)$ and $\left(-\sqrt{a^{2}-b^{2}}, 0\right)$ to the line $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$ is b^{2}.
Solution:
It is given that
$\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$
We can write it as
$\mathrm{bx} \cos \theta+\mathrm{ay} \sin \theta-\mathrm{ab}=0$

Here the length of the perpendicular from point $\left(\sqrt{a^{2}-b^{2}}, 0\right)$ to line (1)

$$
\begin{equation*}
p_{1}=\frac{\left|b \cos \theta\left(\sqrt{a^{2}-b^{2}}\right)+a \sin \theta(0)-a b\right|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}=\frac{\left|b \cos \theta \sqrt{a^{2}-b^{2}}-a b\right|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}} \tag{2}
\end{equation*}
$$

Similarly the length of the perpendicular from point $\left(-\sqrt{a^{2}-b^{2}}, 0\right)$ to line (2)
$p_{2}=\frac{\left|b \cos \theta\left(-\sqrt{a^{2}-b^{2}}\right)+a \sin \theta(0)-a b\right|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}=\frac{\left|b \cos \theta \sqrt{a^{2}-b^{2}}+a b\right|}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}$
By multiplying equations (2) and (3) we get
$p_{1} p_{2}=\frac{\left|b \cos \theta \sqrt{a^{2}-b^{2}}-a b\right|\left(\left(b \cos \theta \sqrt{a^{2}-b^{2}}+a b\right) \mid\right.}{\left(\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}\right)^{2}}$
We get

$$
=\frac{\left|\left(b \cos \theta \sqrt{a^{2}-b^{2}}-a b\right)\left(b \cos \theta \sqrt{a^{2}-b^{2}}+a b\right)\right|}{\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)}
$$

From the formula

$$
=\frac{\left|\left(b \cos \theta \sqrt{a^{2}-b^{2}}\right)^{2}-(a b)^{2}\right|}{\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)}
$$

By squaring the numerator we get

$$
=\frac{\left|b^{2} \cos ^{2} \theta\left(a^{2}-b^{2}\right)-a^{2} b^{2}\right|}{\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)}
$$

By expanding using formula

$$
=\frac{\left|a^{2} b^{2} \cos ^{2} \theta-b^{4} \cos ^{2} \theta-a^{2} b^{2}\right|}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}
$$

Taking out the common terms
$=\frac{b^{2}\left|a^{2} \cos ^{2} \theta-b^{2} \cos ^{2} \theta-a^{2}\right|}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}$

We get
$=\frac{b^{2}\left|a^{2} \cos ^{2} \theta-b^{2} \cos ^{2} \theta-a^{2} \sin ^{2} \theta-a^{2} \cos ^{2} \theta\right|}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}$
Here $\sin ^{2} \theta+\cos ^{2} \theta=1$
$=\frac{b^{2}\left|-\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)\right|}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}$
So we get
$=\frac{b^{2}\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)}{\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)}$
$=b^{2}$
Therefore, it is proved.
24. A person standing at the junction (crossing) of two straight paths represented by the equations $2 x-3 y+4=$ 0 and $3 x+4 y-5=0$ wants to reach the path whose equation is $6 x-7 y+8=0$ in the least time. Find the equation of the path that he should follow.

Solution:

It is given that
$2 x-3 y+4=0 \ldots$. . (1)
$3 x+4 y-5=0$
$6 x-7 y+8=0$
Here, the person is standing at the junction of the paths represented by lines (1) and (2).
By solving equations (1) and (2), we get
$x=-1 / 17$ and $y=22 / 17$
Hence, the person is standing at point ($-1 / 17,22 / 17$).
We know that the person can reach path (3) in the least time if they walk along the perpendicular line to (3) from point (-1/17, 22/17)

Here, the slope of line (3) $=6 / 7$
We get the slope of the line perpendicular to the line $(3)=-1 /(6 / 7)=-7 / 6$
So, the equation of the line passing through $(-1 / 17,22 / 17)$ and having a slope of $-7 / 6$ is written as
$\left(y-\frac{22}{17}\right)=-\frac{7}{6}\left(x+\frac{1}{17}\right)$
By further calculation,
$6(17 y-22)=-7(17 x+1)$
By multiplication,
$102 \mathrm{y}-132=-119 \mathrm{x}-7$
We get
$1119 x+102 y=125$
Therefore, the path that the person should follow is $119 \mathrm{x}+102 \mathrm{y}=125$

