

NCERT Solutions for Class 11 Maths Chapter 2 – Relations and Functions

EXERCISE 2.2

PAGE NO: 35

1. Let A = {1, 2, 3, ..., 14}. Define a relation R from A to A by R = {(x, y): 3x - y = 0, where $x, y \in A$ }. Write down its domain, codomain and range.

Solution:

The relation R from A to A is given as:

 $R = \{(x, y): 3x - y = 0, where x, y \in A\}$

 $= \{(x, y): 3x = y, where x, y \in A\}$

So,

 $R = \{(1, 3), (2, 6), (3, 9), (4, 12)\}$

Now,

The domain of R is the set of all first elements of the ordered pairs in the relation.

Hence, Domain of $R = \{1, 2, 3, 4\}$

The whole set A is the codomain of the relation R.

Hence, Codomain of $R = A = \{1, 2, 3, ..., 14\}$

The range of R is the set of all second elements of the ordered pairs in the relation.

Hence, Range of $R = \{3, 6, 9, 12\}$

2. Define a relation R on the set N of natural numbers by $R = \{(x, y): y = x + 5, x \text{ is a natural number less than } 4; x, y \in N\}$. Depict this relationship using roster form. Write down the domain and the range.

Solution:

The relation **R** is given by:

 $R = \{(x, y): y = x + 5, x \text{ is a natural number less than } 4, x, y \in \mathbb{N}\}$

The natural numbers less than 4 are 1, 2, and 3.

So,

 $\mathbf{R} = \{(1, 6), (2, 7), (3, 8)\}$

Now,

The domain of R is the set of all first elements of the ordered pairs in the relation.

Hence, Domain of $R = \{1, 2, 3\}$

https://byjus.com

The range of R is the set of all second elements of the ordered pairs in the relation.

Hence, Range of $R = \{6, 7, 8\}$

3. A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; $x \in A$, $y \in B$ }. Write R in roster form.

Solution:

Given,

 $A = \{1, 2, 3, 5\}$ and $B = \{4, 6, 9\}$

The relation from A to B is given as

 $R = \{(x, y): \text{ the difference between } x \text{ and } y \text{ is odd}; x \in A, y \in B\}$

Thus,

 $R = \{(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)\}$

4. The figure shows a relationship between the sets P and Q. Write this relation

(i) in set-builder form (ii) in roster form

What is its domain and range?

From the given figure, it's seen that

 $P = \{5, 6, 7\}, Q = \{3, 4, 5\}$

The relation between P and Q:

Set-builder form

(i) $R = \{(x, y): y = x - 2; x \in P\}$ or $R = \{(x, y): y = x - 2 \text{ for } x = 5, 6, 7\}$

Roster form

(ii) $R = \{(5, 3), (6, 4), (7, 5)\}$

Domain of $R = \{5, 6, 7\}$

https://byjus.com

Range of $R = \{3, 4, 5\}$

5. Let A = {1, 2, 3, 4, 6}. Let R be the relation on A defined by

 $\{(a, b): a, b \in A, b \text{ is exactly divisible by } a\}.$

(i) Write R in roster form

(ii) Find the domain of R

(iii) Find the range of R

Solution:

Given,

A = {1, 2, 3, 4, 6} and relation R = {(a, b): $a, b \in A, b$ is exactly divisible by a}

Hence,

(i) $R = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (6, 6)\}$

(ii) Domain of $R = \{1, 2, 3, 4, 6\}$

(iii) Range of $R = \{1, 2, 3, 4, 6\}$

6. Determine the domain and range of the relation R defined by $R = \{(x, x + 5): x \in \{0, 1, 2, 3, 4, 5\}\}$.

Solution:

Given,

Relation R = { $(x, x + 5): x \in \{0, 1, 2, 3, 4, 5\}$ }

Thus,

 $R = \{(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10)\}$

So,

Domain of $R = \{0, 1, 2, 3, 4, 5\}$ and,

Range of $R = \{5, 6, 7, 8, 9, 10\}$

7. Write the relation $\mathbf{R} = \{(x, x^3): x \text{ is a prime number less than 10}\}$ in roster form.

Solution:

Given,

Relation $R = \{(x, x^3): x \text{ is a prime number less than } 10\}$

The prime numbers less than 10 are 2, 3, 5, and 7.

https://byjus.com

Therefore,

 $R = \{(2, 8), (3, 27), (5, 125), (7, 343)\}$

8. Let $A = \{x, y, z\}$ and $B = \{1, 2\}$. Find the number of relations from A to B.

Solution:

Given, $A = \{x, y, z\}$ and $B = \{1, 2\}$

Now,

 $A \times B = \{(x, 1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)\}$

As $n(A \times B) = 6$, the number of subsets of $A \times B$ will be 2⁶.

Thus, the number of relations from A to B is 2^6 .

9. Let R be the relation on Z defined by $R = \{(a, b): a, b \in Z, a - b \text{ is an integer}\}$. Find the domain and range of R.

Solution:

Given,

Relation R = {(a, b): $a, b \in \mathbb{Z}, a - b$ is an integer}

We know that the difference between any two integers is always an integer.

Therefore,

Domain of R = Z and Range of R = Z