EXERCISE 2.2

1. Let $\mathbf{A}=\{1,2,3, \ldots, 14\}$. Define a relation R from A to A by $R=\{(x, y): 3 x-y=0$, where $x, y \in A\}$. Write down its domain, codomain and range.

Solution:

The relation R from A to A is given as:
$\mathrm{R}=\{(x, y): 3 x-y=0$, where $x, y \in \mathrm{~A}\}$
$=\{(x, y): 3 x=y$, where $x, y \in \mathrm{~A}\}$
So,
$R=\{(1,3),(2,6),(3,9),(4,12)\}$
Now,

The domain of R is the set of all first elements of the ordered pairs in the relation.
Hence, Domain of $\mathrm{R}=\{1,2,3,4\}$
The whole set A is the codomain of the relation R .
Hence, Codomain of $\mathrm{R}=\mathrm{A}=\{1,2,3, \ldots, 14\}$
The range of R is the set of all second elements of the ordered pairs in the relation.
Hence, Range of $\mathrm{R}=\{3,6,9,12\}$
2. Define a relation R on the set N of natural numbers by $R=\{(x, y): y=x+5, x$ is a natural number less than $4 ; x, y \in N\}$. Depict this relationship using roster form. Write down the domain and the range.

Solution:

The relation R is given by:
$\mathrm{R}=\{(x, y): y=x+5, x$ is a natural number less than $4, x, y \in \mathbf{N}\}$
The natural numbers less than 4 are 1,2, and 3 .
So,
$R=\{(1,6),(2,7),(3,8)\}$
Now,

The domain of R is the set of all first elements of the ordered pairs in the relation.
Hence, Domain of $R=\{1,2,3\}$

The range of R is the set of all second elements of the ordered pairs in the relation.
Hence, Range of $R=\{6,7,8\}$
3. $A=\{1,2,3,5\}$ and $B=\{4,6,9\}$. Define a relation R from A to B by $R=\{(x, y)$: the difference between x and y is odd; $x \in A, y \in B\}$. Write R in roster form.

Solution:

Given,
$A=\{1,2,3,5\}$ and $B=\{4,6,9\}$
The relation from A to B is given as
$\mathrm{R}=\{(x, y)$: the difference between x and y is odd; $x \in \mathrm{~A}, y \in \mathrm{~B}\}$
Thus,
$R=\{(1,4),(1,6),(2,9),(3,4),(3,6),(5,4),(5,6)\}$
4. The figure shows a relationship between the sets P and Q. Write this relation
(i) in set-builder form (ii) in roster form

What is its domain and range?

Solution:
From the given figure, it's seen that
$P=\{5,6,7\}, Q=\{3,4,5\}$
The relation between P and Q :
Set-builder form
(i) $\mathrm{R}=\{(x, y): y=x-2 ; x \in \mathrm{P}\}$ or $\mathrm{R}=\{(x, y): y=x-2$ for $x=5,6,7\}$

Roster form
(ii) $\mathrm{R}=\{(5,3),(6,4),(7,5)\}$

Domain of $R=\{5,6,7\}$

Range of $\mathrm{R}=\{3,4,5\}$
5. Let $\mathrm{A}=\{1,2,3,4,6\}$. Let R be the relation on A defined by $\{(a, b): a, b \in \mathbf{A}, b$ is exactly divisible by $a\}$.
(i) Write \mathbf{R} in roster form
(ii) Find the domain of \mathbf{R}
(iii) Find the range of \mathbf{R}

Solution:

Given,
$\mathrm{A}=\{1,2,3,4,6\}$ and relation $\mathrm{R}=\{(a, b): a, b \in \mathrm{~A}, b$ is exactly divisible by $a\}$
Hence,
(i) $\mathrm{R}=\{(1,1),(1,2),(1,3),(1,4),(1,6),(2,2),(2,4),(2,6),(3,3),(3,6),(4,4),(6,6)\}$
(ii) Domain of $\mathrm{R}=\{1,2,3,4,6\}$
(iii) Range of $\mathrm{R}=\{1,2,3,4,6\}$
6. Determine the domain and range of the relation R defined by $R=\{(x, x+5): x \in\{0,1,2,3,4,5\}\}$.

Solution:

Given,
Relation $\mathrm{R}=\{(x, x+5): x \in\{0,1,2,3,4,5\}\}$
Thus,
$R=\{(0,5),(1,6),(2,7),(3,8),(4,9),(5,10)\}$
So,

Domain of $\mathrm{R}=\{0,1,2,3,4,5\}$ and,
Range of $R=\{5,6,7,8,9,10\}$
7. Write the relation $\mathrm{R}=\left\{\left(x, x^{3}\right)\right.$: x is a prime number less than 10$\}$ in roster form.

Solution:

Given,
Relation $\mathrm{R}=\left\{\left(x, x^{3}\right): x\right.$ is a prime number less than 10$\}$
The prime numbers less than 10 are $2,3,5$, and 7 .

Therefore,
$R=\{(2,8),(3,27),(5,125),(7,343)\}$
8. Let $A=\{x, y, z\}$ and $B=\{1,2\}$. Find the number of relations from A to B.

Solution:
Given, $\mathrm{A}=\{x, y, \mathrm{z}\}$ and $\mathrm{B}=\{1,2\}$
Now,
$\mathrm{A} \times \mathrm{B}=\{(x, 1),(x, 2),(y, 1),(y, 2),(z, 1),(z, 2)\}$
As $n(A \times B)=6$, the number of subsets of $A \times B$ will be 2^{6}.
Thus, the number of relations from A to B is 2^{6}.
9. Let R be the relation on Z defined by $R=\{(a, b): a, b \in \mathbb{Z}, a-b$ is an integer $\}$. Find the domain and range of R.

Solution:

Given,
Relation $\mathrm{R}=\{(a, b): a, b \in \mathrm{Z}, a-b$ is an integer $\}$
We know that the difference between any two integers is always an integer.
Therefore,
Domain of $\mathrm{R}=\mathrm{Z}$ and Range of $\mathrm{R}=\mathrm{Z}$

