EXERCISE 2.3

1. Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.
(i) $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$
(ii) $\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$
(iii) $\{(1,3),(1,5),(2,5)\}$

Solution:

(i) $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$

As $2,5,8,11,14$, and 17 are the elements of the domain of the given relation having their unique images, this relation can be called a function.

Here, domain $=\{2,5,8,11,14,17\}$ and range $=\{1\}$
(ii) $\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$

As $2,4,6,8,10,12$, and 14 are the elements of the domain of the given relation having their unique images, this relation can be called a function.

Here, domain $=\{2,4,6,8,10,12,14\}$ and range $=\{1,2,3,4,5,6,7\}$
(iii) $\{(1,3),(1,5),(2,5)\}$

It's seen that the same first element, i.e., 1 , corresponds to two different images, i.e., 3 and 5; this relation cannot be called a function.
2. Find the domain and range of the following real function:
(i) $f(x)=-|x|$ (ii) $f(x)=\sqrt{ }\left(9-x^{2}\right)$

Solution:

(i) Given,
$f(x)=-|x|, x \in \mathrm{R}$
We know that,
$|x|=\left\{\begin{array}{l}x, x \geq 0 \\ -x, x<0\end{array}\right.$
$\therefore f(x)=-|x|=\left\{\begin{array}{l}-x, x \geq 0 \\ x, x<0\end{array}\right.$

As $f(x)$ is defined for $x \in \mathrm{R}$, the domain of f is R .
It is also seen that the range of $f(x)=-|x|$ is all real numbers except positive real numbers.
Therefore, the range of f is given by $(-\infty, 0]$.
(ii) $f(x)=\sqrt{ }\left(9-x^{2}\right)$

As $\sqrt{ }\left(9-x^{2}\right)$ is defined for all real numbers that are greater than or equal to -3 and less than or equal to 3 , for $9-x^{2} \geq 0$.
So, the domain of $f(x)$ is $\{x:-3 \leq x \leq 3\}$ or $[-3,3]$.
Now,
For any value of x in the range $[-3,3]$, the value of $f(x)$ will lie between 0 and 3 .
Therefore, the range of $f(x)$ is $\{x: 0 \leq x \leq 3\}$ or $[0,3]$.
3. A function f is defined by $f(x)=2 x-5$. Write down the values of
(i) $f(0)$, (ii) $f(7)$, (iii) $f(-3)$

Solution:

Given,
Function, $f(x)=2 x-5$
Therefore,
(i) $f(0)=2 \times 0-5=0-5=-5$
(ii) $f(7)=2 \times 7-5=14-5=9$
(iii) $f(-3)=2 \times(-3)-5=-6-5=-11$
4. The function ' t ', which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by $t(\mathrm{C})=\frac{9 \mathrm{C}}{5}+32$.

Find (i) $t(0)$ (ii) $t(28)$ (iii) $t(-10)$ (iv) The value of C, when $t(C)=212$

Solution:

Given function, $t(\mathrm{C})=\frac{9 \mathrm{C}}{5}+32$
So,
So,
(j) $t(0)=\frac{9 \times 0}{5}+32=0+32=32$
(ii) $t(28)=\frac{9 \times 28}{5}+32=\frac{252+160}{5}=\frac{412}{5}$
(iii) $t(-10)=\frac{9 \times(-10)}{5}+32=9 \times(-2)+32=-18+32=14$
(iv) Gixen that, $t(\mathrm{C})=212$

$$
\begin{aligned}
& \therefore 212=\frac{9 C}{5}+32 \\
& \Rightarrow \frac{9 C}{5}=212-32 \\
& \Rightarrow \frac{9 C}{5}=180 \\
& \Rightarrow 9 C=180 \times 5 \\
& \Rightarrow C=\frac{180 \times 5}{9}=100
\end{aligned}
$$

Therefore, the value of t when $t(\mathrm{C})=212$, is 100 .
5. Find the range of each of the following functions:
(i) $f(x)=2-3 x, x \in \mathrm{R}, x>0$
(ii) $f(x)=x^{2}+2, x$ is a real number
(iii) $f(x)=x, x$ is a real number

Solution:

(i) Given,
$\mathrm{f}(\mathrm{x})=2-3 x, x \in \mathrm{R}, x>0$
Here the values of $f(x)$ for various values of real numbers $x>0$ can be given as

x	0.01	0.1	0.9	1	2	2.5	4	5	\ldots
$\mathrm{f}(\mathrm{x})$	1.97	1.7	-0.7	-1	-4	-5.5	-10	-13	\ldots

It can be observed that the range of f is the set of all real numbers less than 2 .
Range of $f=(-\infty, 2)$
We have,
$x>0$
So,
$3 x>0$
$-3 \mathrm{x}<0$ [Multiplying by -1 on both sides, the inequality sign changes]
$2-3 x<2$

Therefore, the value of $2-3 x$ is less than 2 .
Hence, Range $=(-\infty, 2)$
(ii) Given,
$f(x)=x^{2}+2, x$ is a real number
Here the values of $f(x)$ for various values of real numbers x can be given as

x	0	± 0.3	± 0.8	± 1	± 2	± 3	\ldots
$f(x)$	2	2.09	2.64	3	6	11	\ldots

It can be oberserved that the range of f is the set of all real numbers greater than 2.
Range of $f=[2, \infty)$
We know that,
$x^{2} \geq 0$
So,
$x^{2}+2 \geq 2$ [Adding 2 on both sides]
Therefore, the value of $x^{2}+2$ is always greater or equal to 2 , for x is a real number.
Hence, Range $=[2, \infty)$
(iii) Given,
$f(x)=x, x$ is a real number
Clearly, the range of f is the set of all real numbers.
Thus,
Range of $f=\mathrm{R}$

