MISCELLANEOUS EXERCISE

$$
f(x)=\left\{\begin{array}{l}
x^{2}, 0 \leq x \leq 3 \\
3 x, 3 \leq x \leq 10
\end{array}\right.
$$

1. The relation f is defined by

The relation g is defined by $g(x)= \begin{cases}x^{2}, & 0 \leq x \leq 2 \\ 3 x, & 2 \leq x \leq 10\end{cases}$
Show that f is a function and g is not a function.

Solution:

The given relation f is defined as:
$f(x)= \begin{cases}x^{2}, & 0 \leq x \leq 3 \\ 3 x, & 3 \leq x \leq 10\end{cases}$
It is seen that for $0 \leq x<3$,
$f(x)=x^{2}$ and for $3<x \leq 10$,
$f(x)=3 x$
Also, at $x=3$
$f(x)=3^{2}=9$ or $f(x)=3 \times 3=9$
i.e., at $x=3, f(x)=9$ [Single image]

Hence, for $0 \leq x \leq 10$, the images of $f(x)$ are unique.
Therefore, the given relation is a function.
Now,
In the given relation, g is defined as
$g(x)= \begin{cases}x^{2}, & 0 \leq x \leq 2 \\ 3 x, & 2 \leq x \leq 10\end{cases}$
It is seen that, for $x=2$
$g(x)=2^{2}=4$ and $g(x)=3 \times 2=6$
Thus, element 2 of the domain of the relation g corresponds to two different images, i.e., 4 and 6 .
Therefore, this relation is not a function.
2. If $f(x)=x^{2}$, find
$\frac{f(1.1)-f(1)}{(1.1-1)}$

Solution:

Given,
$f(x)=x^{2}$
Hence,

$$
\frac{f(1.1)-f(1)}{(1.1-1)}=\frac{(1.1)^{2}-(1)^{2}}{(1.1-1)}=\frac{1.21-1}{0.1}=\frac{0.21}{0.1}=2.1
$$

3. Find the domain of the function
$f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$

Solution:

Given function,
$f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$.
$f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}=\frac{x^{2}+2 x+1}{(x-6)(x-2)}$
It's clearly seen that the function f is defined for all real numbers except at $x=6$ and $x=2$, as the denominator becomes zero otherwise.

Therefore, the domain of f is $\mathrm{R}-\{2,6\}$.
4. Find the domain and the range of the real function \boldsymbol{f} defined by $\boldsymbol{f}(\mathrm{x})=\sqrt{ }(\mathrm{x}-1)$.

Solution:

Given real function,
$f(x)=\sqrt{ }(x-1)$
Clearly, $\sqrt{ }(x-1)$ is defined for $(x-1) \geq 0$
So, the function $f(x)=\sqrt{ }(x-1)$ is defined for $x \geq 1$

Thus, the domain of f is the set of all real numbers greater than or equal to 1 .
Domain of $f=[1, \infty)$
Now,
As $x \geq 1 \Rightarrow(x-1) \geq 0 \Rightarrow \sqrt{ }(x-1) \geq 0$
Thus, the range of f is the set of all real numbers greater than or equal to 0 .
Range of $f=[0, \infty)$
5. Find the domain and the range of the real function f defined by $f(x)=|x-1|$.

Solution:

Given a real function,
$f(x)=|x-1|$
Clearly, the function $|x-1|$ is defined for all real numbers.
Hence,
Domain of $f=\mathrm{R}$
Also, for $x \in R,|x-1|$ assumes all real numbers.
Therefore, the range of f is the set of all non-negative real numbers.
6. Let $f=\left\{\left(x, \frac{x^{2}}{1+x^{2}}\right): x \in \mathbf{R}\right\}$ be a function from \mathbf{R} into \mathbf{R}. Determine the range of f.

Solution:

Given function,

$$
f=\left\{\left(x, \frac{x^{2}}{1+x^{2}}\right): x \in \mathbf{R}\right\}
$$

Substituting values and determining the images, we have

$$
=\left\{(0,0),\left(\pm 0.5, \frac{1}{5}\right),\left(\pm 1, \frac{1}{2}\right),\left(\pm 1.5, \frac{9}{13}\right),\left(\pm 2, \frac{4}{5}\right),\left(3, \frac{9}{10}\right),\left(4, \frac{16}{17}\right), \ldots\right\}
$$

The range of f is the set of all second elements. It can be observed that all these elements are greater than or equal to 0 but less than 1.
[As the denominator is greater than the numerator.]

Or,
We know that, for $\mathrm{x} \in \mathrm{R}$,
$x^{2} \geq 0$
Then,
$x^{2}+1 \geq x^{2}$
$1 \geq x^{2} /\left(x^{2}+1\right)$
Therefore, the range of $f=[0,1)$
7. Let $f, g: \mathbf{R} \rightarrow \mathbf{R}$ be defined, respectively by $f(x)=x+1, g(x)=2 x-3$. Find $f+g, f-g$ and f / g.

Solution:
Given the functions $f, g: \mathrm{R} \rightarrow \mathrm{R}$ is defined as
$f(x)=x+1, g(x)=2 x-3$
Now,
$(f+g)(x)=f(x)+g(x)=(x+1)+(2 x-3)=3 x-2$
Thus, $(f+g)(x)=3 x-2$
$(f-g)(x)=f(x)-g(x)=(x+1)-(2 x-3)=x+1-2 x+3=-x+4$
Thus, $(f-g)(x)=-x+4$
$f / g(\mathrm{x})=f(\mathrm{x}) / g(\mathrm{x}), \mathrm{g}(\mathrm{x}) \neq 0, \mathrm{x} \in \mathrm{R}$
$f / g(\mathrm{x})=x+1 / 2 x-3,2 x-3 \neq 0$
Thus, $f / g(\mathrm{x})=x+1 / 2 x-3, x \neq 3 / 2$
8. Let $f=\{(1,1),(2,3),(0,-1),(-1,-3)\}$ be a function from Z to Z defined by $f(x)=a x+b$, for some integers a, b. Determine a, b.

Solution:

Given, $f=\{(1,1),(2,3),(0,-1),(-1,-3)\}$
And the function defined as, $f(x)=a x+b$
For $(1,1) \in f$
We have, $f(1)=1$
So, $a \times 1+b=1$
$a+b=1$ \qquad
And for $(0,-1) \in f$
We have $f(0)=-1$
$a \times 0+b=-1$
$b=-1$
On substituting $b=-1$ in (i), we get
$a+(-1)=1 \Rightarrow a=1+1=2$.
Therefore, the values of a and b are 2 and -1 , respectively.
9. Let R be a relation from N to N defined by $\mathrm{R}=\left\{(a, b): a, b \in \mathrm{~N}\right.$ and $\left.a=b^{2}\right\}$. Are the following true?
(i) $(a, a) \in \mathbf{R}$, for all $a \in \mathbf{N}$
(ii) $(a, b) \in \mathbf{R}$, implies $(b, a) \in \mathbf{R}$
(iii) $(a, b) \in \mathbf{R},(b, c) \in \mathbf{R}$ implies $(a, c) \in \mathbf{R}$

Justify your answer in each case.

Solution:

Given relation $\mathrm{R}=\left\{(a, b): a, b \in \mathrm{~N}\right.$ and $\left.a=b^{2}\right\}$
(i) It can be seen that $2 \in \mathrm{~N}$; however, $2 \neq 2^{2}=4$.

Thus, the statement " $(a, a) \in \mathrm{R}$, for all $a \in \mathrm{~N}$ " is not true.
(ii) Its clearly seen that $(9,3) \in N$ because $9,3 \in N$ and $9=3^{2}$.

Now, $3 \neq 9^{2}=81$; therefore, $(3,9) \notin \mathrm{N}$
Thus, the statement " $(a, b) \in \mathrm{R}$, implies $(b, a) \in \mathrm{R}$ " is not true.
(iii) It's clearly seen that $(16,4) \in R,(4,2) \in R$ because $16,4,2 \in N$ and $16=4^{2}$ and $4=2^{2}$.

Now, $16 \neq 2^{2}=4$; therefore, $(16,2) \notin \mathrm{N}$
Thus, the statement " $(a, b) \in \mathrm{R},(b, c) \in \mathrm{R}$ implies $(a, c) \in \mathrm{R}$ " is not true.
10. Let $\mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{1,5,9,11,15,16\}$ and $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$. Are the following true?
(i) f is a relation from \mathbf{A} to B (ii) f is a function from A to B

Justify your answer in each case.

Solution:

Given,
$A=\{1,2,3,4\}$ and $B=\{1,5,9,11,15,16\}$
So,
$\mathrm{A} \times \mathrm{B}=\{(1,1),(1,5),(1,9),(1,11),(1,15),(1,16),(2,1),(2,5),(2,9),(2,11),(2,15),(2,16),(3,1),(3,5),(3,9)$, $(3,11),(3,15),(3,16),(4,1),(4,5),(4,9),(4,11),(4,15),(4,16)\}$

Also, given that,
$f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$
(i) A relation from a non-empty set A to a non-empty set B is a subset of the Cartesian product $\mathrm{A} \times \mathrm{B}$.

It's clearly seen that f is a subset of $\mathrm{A} \times \mathrm{B}$.
Therefore, f is a relation from A to B.
(ii) As the same first element, i.e., 2 corresponds to two different images (9 and 11), relation f is not a function.
11. Let f be the subset of $Z \times Z$ defined by $f=\{(a b, a+b): a, b \in \mathbb{Z}\}$. Is f a function from Z to Z : justify your answer.

Solution:

Given relation, f is defined as
$f=\{(a b, a+b): a, b \in \mathrm{Z}\}$
We know that a relation f from a set A to a set B is said to be a function if every element of set A has unique images in set B.

As $2,6,-2,-6 \in \mathrm{Z},(2 \times 6,2+6),(-2 \times-6,-2+(-6)) \in f$
i.e., $(12,8),(12,-8) \in f$

It's clearly seen that the same first element, 12 , corresponds to two different images (8 and -8).
Therefore, the relation f is not a function.
12. Let $\mathrm{A}=\{9,10,11,12,13\}$ and let $f: \mathrm{A} \rightarrow \mathrm{N}$ be defined by $f(n)=$ the highest prime factor of n. Find the range of f.

Solution:

Given,
$\mathrm{A}=\{9,10,11,12,13\}$
Now, $f: \mathbf{A} \rightarrow \mathbf{N}$ is defined as
$f(n)=$ The highest prime factor of n

So,
Prime factor of $9=3$
Prime factors of $10=2,5$
Prime factor of $11=11$
Prime factors of $12=2,3$
Prime factor of $13=13$
Thus, it can be expressed as
$f(9)=$ The highest prime factor of $9=3$
$f(10)=$ The highest prime factor of $10=5$
$f(11)=$ The highest prime factor of $11=11$
$f(12)=$ The highest prime factor of $12=3$
$f(13)=$ The highest prime factor of $13=13$
The range of f is the set of all $f(n)$, where $n \in \mathrm{~A}$.
Therefore,
Range of $f=\{3,5,11,13\}$

