EXERCISE 3.1

1. Find the radian measures corresponding to the following degree measures:
(i) 25° (ii) $-47^{\circ} 30^{\prime}$ (iii) 240° (iv) 520°

Solution:
(i) 25°

Here $180^{\circ}=\pi$ radian
It can be written as
$25^{\circ}=\frac{\pi}{180} \times 25$ radian
So we get
$=\frac{5 \pi}{36}$ radian
(ii) $-47^{\circ} 30^{\prime}$

Here $1^{\circ}=60^{\prime}$
It can be written as
$-47^{\circ} 30^{\prime}=-47 \frac{1}{2}$ degree
So we get
$=\frac{-95}{2}$ degree
Here $180^{\circ}=\pi$ radian
$\frac{-95}{2}$ deg ree $=\frac{\pi}{180} \times\left(\frac{-95}{2}\right)$ radian
It can be written as
$=\left(\frac{-19}{36 \times 2}\right) \pi$ radian $=\frac{-19}{72} \pi$ radian
We get
$-47^{\circ} 30^{\prime}=\frac{-19}{72} \pi$ radian
(iii) 240°

Here $180^{\circ}=\pi$ radian
It can be written as

$$
240^{\circ}=\frac{\pi}{180} \times 240 \text { radian }
$$

So we get
$=\frac{4}{3} \pi$ radian
(iv) 520°

Here $180^{\circ}=\pi$ radian
It can be written as
$520^{\circ}=\frac{\pi}{180} \times 520$ radian
So we get
$=\frac{26 \pi}{9}$ radian
2. Find the degree measures corresponding to the following radian measures (Use $\boldsymbol{\pi}=\mathbf{2 2} / 7$)
(i) $11 / 16$
(ii) -4
(iii) $5 \pi / 3$
(iv) $7 \pi / 6$

Solution:
(i) $11 / 16$

Here π radian $=180^{\circ}$
$\frac{11}{16}$ radain $=\frac{180}{\pi} \times \frac{11}{16}$ deg ree
We can write it as
$=\frac{45 \times 11}{\pi \times 4}$ deg ree

So we get
$=\frac{45 \times 11 \times 7}{22 \times 4}$ deg ree
$=\frac{315}{8}$ deg ree
$=39 \frac{3}{8}$ deg ree
Take $1^{\circ}=60^{\circ}$
$=39^{\circ}+\frac{3 \times 60}{8}$ min utes
We get
$=39^{\circ}+22^{\prime}+\frac{1}{2}$ min utes
Consider $1^{\circ}=60^{\prime \prime}$
$=39^{\circ} 22^{\prime} 30^{\prime \prime}$
(ii) -4

Here π radian $=180^{\circ}$
-4 radian $=\frac{180}{\pi} \times(-4)$ deg ree
We can write it as
$=\frac{180 \times 7(-4)}{22}$ deg ree
By further calculation
$=\frac{-2520}{11}$ deg ree $=-229 \frac{1}{11}$ deg ree
Take $1^{\circ}=60^{\circ}$
$=-229^{\circ}+\frac{1 \times 60}{11}$ min utes
So we get
$=-229^{\circ}+5^{\prime}+\frac{5}{11}$ min utes
Again $1^{\prime}=60^{\prime \prime}$
$=-229^{\circ} 5^{\prime} 27^{\prime \prime}$
(iii) $5 \pi / 3$

Here π radian $=180^{\circ}$
$\frac{5 \pi}{3}$ radian $=\frac{180}{\pi} \times \frac{5 \pi}{3}$ deg ree
We get
$=300^{\circ}$
(iv) $7 \pi / 6$

Here π radian $=180^{\circ}$
$\frac{7 \pi}{6}$ radian $=\frac{180}{\pi} \times \frac{7 \pi}{6}$
We get
$=210^{\circ}$
3. A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

Solution:

It is given that
No. of revolutions made by the wheel in
1 minute $=360$
1 second $=360 / 60=6$
We know that
The wheel turns an angle of 2π radian in one complete revolution.
In 6 complete revolutions, it will turn an angle of $6 \times 2 \pi$ radian $=12 \pi$ radian

Therefore, in one second, the wheel turns an angle of 12π radian.
4. Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm (Use $\pi=22 / 7$).

Solution:

Consider a circle of radius r unit with 1 unit as the arc length which subtends an angle θ radian at the centre
$\theta=1 / \mathrm{r}$
Here $\mathrm{r}=100 \mathrm{~cm}, 1=22 \mathrm{~cm}$
$\theta=\frac{22}{100}$ radian $=\frac{180}{\pi} \times \frac{22}{100}$ deg ree
It can be written as
$=\frac{180 \times 7 \times 22}{22 \times 100}$ deg ree
$=\frac{126}{10} \mathrm{deg}$ ree
So we get
$=12 \frac{3}{5}$ deg ree
Here $1^{\circ}=60^{\circ}$
$=12^{\circ} 36^{\circ}$
Therefore, the required angle is $12^{\circ} 36^{\prime}$.
5. In a circle of diameter 40 cm , the length of a chord is 20 cm . Find the length of minor arc of the chord.

Solution:

The dimensions of the circle are
Diameter $=40 \mathrm{~cm}$
Radius $=40 / 2=20 \mathrm{~cm}$
Consider AB be as the chord of the circle i.e. length $=20 \mathrm{~cm}$

In $\triangle \mathrm{OAB}$,
Radius of circle $=\mathrm{OA}=\mathrm{OB}=20 \mathrm{~cm}$
Similarly $\mathrm{AB}=20 \mathrm{~cm}$
Hence, $\triangle \mathrm{OAB}$ is an equilateral triangle.
$\theta=60^{\circ}=\pi / 3$ radian
In a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre

We get $\theta=1 / \mathrm{r}$

$$
\frac{\pi}{3}=\frac{\overparen{\mathrm{AB}}}{20} \Rightarrow \overparen{\mathrm{AB}}=\frac{20 \pi}{3} \mathrm{~cm}
$$

Therefore, the length of the minor arc of the chord is $20 \pi / 3 \mathrm{~cm}$.
6. If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.

Solution:

Consider r_{1} and r_{2} as the radii of the two circles.
Let an arc of length 1 subtend an angle of 60° at the centre of the circle of radius r_{1} and an arc of length
1 subtend an angle of 75° at the centre of the circle of radius r_{2}.
Here $60^{\circ}=\pi / 3$ radian and $75^{\circ}=5 \pi / 12$ radian
In a circle of radius r unit, if an arc of length 1 unit subtends an angle θ radian at the centre
We get
$\theta=1 / \mathrm{r}$ or $1=\mathrm{r} \theta$
We know that
$l=\frac{r_{1} \pi}{3}$ and $l=\frac{r_{2} 5 \pi}{12}$
By equating both we get
$\frac{r_{1} \pi}{3}=\frac{r_{2} 5 \pi}{12}$
On further calculation
$r_{1}=\frac{r_{2} 5}{4}$
So we get
$\frac{r_{1}}{r_{2}}=\frac{5}{4}$
Therefore, the ratio of the radii is $5: 4$.
7. Find the angle in radian though which a pendulum swings if its length is 75 cm and the tip describes an arc of length
(i) 10 cm (ii) 15 cm (iii) 21 cm

Solution:
In a circle of radius r unit, if an arc of length 1 unit subtends an angle θ radian at the centre, then $\theta=1 / r$
We know that $\mathrm{r}=75 \mathrm{~cm}$
(i) $1=10 \mathrm{~cm}$

So we get
$\theta=10 / 75$ radian
By further simplification
$\theta=2 / 15$ radian
(ii) $\mathrm{l}=15 \mathrm{~cm}$

So we get
$\theta=15 / 75$ radian
By further simplification
$\theta=1 / 5$ radian
(iii) $1=21 \mathrm{~cm}$

So we get
$\theta=21 / 75$ radian
By further simplification
$\theta=7 / 25$ radian

