

# **EXERCISE 3.1**

# **PAGE: 54**

**1.** Find the radian measures corresponding to the following degree measures:

(i)  $25^\circ$  (ii)  $-\,47^\circ$  30' (iii)  $240^\circ$  (iv)  $520^\circ$ 

#### Solution:

(i) 25° Here  $180^\circ = \pi$  radian It can be written as  $25^\circ = \frac{\pi}{180} \times 25$  radian So we get  $=\frac{5\pi}{36}$  radian (ii) - 47° 30' Here 1° = 60' It can be written as  $-47^{\circ} 30' = -47\frac{1}{2}$  degree So we get  $=\frac{-95}{2}$  degree Here  $180^\circ = \pi$  radian  $\frac{-95}{2}$  deg ree =  $\frac{\pi}{180} \times \left(\frac{-95}{2}\right)$  radian It can be written as  $=\left(\frac{-19}{36\times 2}\right)\pi$  radian  $=\frac{-19}{72}\pi$  radian We get  $-47^{\circ} 30' = \frac{-19}{72} \pi$  radian (iii) 240° Here  $180^\circ = \pi$  radian It can be written as  $240^\circ = \frac{\pi}{180} \times 240$  radian So we get  $=\frac{4}{3}\pi$  radian (iv) 520°



## NCERT Solutions for Class 11 Maths Chapter 3 – Trigonometric Functions

Here  $180^\circ = \pi$  radian

It can be written as

$$520^\circ = \frac{\pi}{180} \times 520$$
 radian

So we get =  $\frac{26\pi}{9}$  radian

2. Find the degree measures corresponding to the following radian measures (Use  $\pi = 22/7$ )

(i) 11/16

(ii) -4

(iii) 5π/3

(iv) 7π/6

### Solution:

(i) 11/16

Here  $\pi$  radian = 180°

$$\frac{11}{16} \operatorname{radain} = \frac{180}{\pi} \times \frac{11}{16} \operatorname{deg ree}$$
  
We can write it as  
$$= \frac{45 \times 11}{\pi \times 4} \operatorname{deg ree}$$

So we get =  $\frac{45 \times 11 \times 7}{22 \times 4}$  deg ree =  $\frac{315}{8}$  deg ree

$$=39\frac{3}{8}$$
 deg ree

Take  $1^{\circ} = 60^{\circ}$ =  $39^{\circ} + \frac{3 \times 60}{8}$  min utes We get =  $39^{\circ} + 22' + \frac{1}{2}$  min utes Consider 1' =  $60^{\circ\circ}$ =  $39^{\circ} 22' 30''$ 

(ii) -4

Here  $\pi$  radian = 180°



### NCERT Solutions for Class 11 Maths Chapter 3 – Trigonometric Functions

 $-4 \operatorname{radian} = \frac{180}{\pi} \times (-4) \operatorname{deg ree}$ We can write it as  $=\frac{180\times7(-4)}{22}$  degree By further calculation  $=\frac{-2520}{11}$  deg ree  $=-229\frac{1}{11}$  deg ree Take 1º = 60'  $=-229^\circ+\frac{1\times60}{11}$  minutes So we get  $= -229^{\circ} + 5' + \frac{5}{11}$  min utes Again 1' = 60" = - 229° 5' 27" (iii)  $5\pi/3$ Here  $\pi$  radian = 180°  $\frac{5\pi}{3}$  radian =  $\frac{180}{\pi} \times \frac{5\pi}{3}$  deg ree We get  $= 300^{\circ}$ (iv)  $7\pi/6$ Here  $\pi$  radian = 180°  $\frac{7\pi}{6}$  radian =  $\frac{180}{\pi} \times \frac{7\pi}{6}$ We get  $= 210^{\circ}$ 

3. A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

#### Solution:

It is given that

No. of revolutions made by the wheel in

1 minute = 360

1 second = 360/60 = 6

We know that

The wheel turns an angle of  $2\pi$  radian in one complete revolution.

In 6 complete revolutions, it will turn an angle of  $6 \times 2\pi$  radian = 12  $\pi$  radian

https://byjus.com



Therefore, in one second, the wheel turns an angle of  $12\pi$  radian.

4. Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm (Use  $\pi = 22/7$ ).

Solution:

Consider a circle of radius r unit with 1 unit as the arc length which subtends an angle  $\theta$  radian at the

centre  $\theta = 1/r$ Here r = 100 cm, 1 = 22 cm  $\theta = \frac{22}{100} \text{ radian} = \frac{180}{\pi} \times \frac{22}{100} \text{ deg ree}$ It can be written as  $= \frac{180 \times 7 \times 22}{22 \times 100} \text{ deg ree}$   $= \frac{126}{10} \text{ deg ree}$ So we get  $= 12\frac{3}{5} \text{ deg ree}$ Here  $1^\circ = 60^\circ$   $= 12^\circ 36^\circ$ Therefore, the required angle is  $12^\circ 36^\circ$ .

5. In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.

#### Solution:

The dimensions of the circle are

Diameter = 40 cm

Radius = 40/2 = 20 cm

Consider AB be as the chord of the circle i.e. length = 20 cm



In  $\triangle OAB$ , Radius of circle = OA = OB = 20 cm Similarly AB = 20 cm Hence,  $\triangle OAB$  is an equilateral triangle.  $\theta = 60^\circ = \pi/3$  radian

In a circle of radius r unit, if an arc of length l unit subtends an angle  $\theta$  radian at the centre

https://byjus.com



We get  $\theta = 1/r$ 

$$\frac{\pi}{3} = \frac{AB}{20} \Longrightarrow \widehat{AB} = \frac{20\pi}{3} \text{ cm}$$

Therefore, the length of the minor arc of the chord is  $20\pi/3$  cm.

6. If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.

Solution:

Consider r1 and r2 as the radii of the two circles.

Let an arc of length 1 subtend an angle of 60° at the centre of the circle of radius r1 and an arc of length 1 subtend an angle of 75° at the centre of the circle of radius r2. Here  $60^\circ = \pi/3$  radian and  $75^\circ = 5\pi/12$  radian In a circle of radius r unit, if an arc of length l unit subtends an angle  $\theta$  radian at the centre We get  $\theta = 1/r \text{ or } 1 = r \theta$ We know that  $l = \frac{r_1 \pi}{3}$  and  $l = \frac{r_2 5 \pi}{12}$ By equating both we get  $\frac{r_1\pi}{r_1} = \frac{r_25\pi}{r_2}$ 3 12 On further calculation  $r_1 = \frac{r_2 5}{4}$ So we get  $\frac{r_1}{r_1} = \frac{5}{r_1}$ 4  $r_2$ Therefore, the ratio of the radii is 5: 4.

7. Find the angle in radian though which a pendulum swings if its length is 75 cm and the tip describes an arc of length

(i) 10 cm (ii) 15 cm (iii) 21 cm

### Solution:

In a circle of radius r unit, if an arc of length l unit subtends an angle  $\theta$  radian at the centre, then  $\theta = 1/r$ 

We know that r = 75 cm

(i) l = 10 cm

So we get

 $\theta = 10/75$  radian

By further simplification

 $\theta = 2/15$  radian

(ii) l = 15 cm

So we get



 $\theta = 15/75$  radian

By further simplification

 $\theta = 1/5$  radian

(iii) 1 = 21 cm

So we get

 $\theta = 21/75$  radian

By further simplification

 $\theta = 7/25$  radian



