EXERCISE 3.2

Find the values of other five trigonometric functions in Exercises 1 to 5.

1. $\cos x=-1 / 2$, x lies in third quadrant.

Solution:
It is given that
$\cos x=-1 / 2$
$\sec x=1 / \cos x$
Substituting the values
$=\frac{1}{\left(-\frac{1}{2}\right)}=-2$
Consider
$\sin ^{2} x+\cos ^{2} x=1$
We can write it as
$\sin ^{2} x=1-\cos ^{2} x$
Substituting the values
$\sin ^{2} x=1-(-1 / 2)^{2}$
$\sin ^{2} x=1-1 / 4=3 / 4$
$\sin ^{2} x= \pm \sqrt{3} / 2$
Here x lies in the third quadrant so the value of $\sin x$ will be negative $\sin x=-\sqrt{3} / 2$
We can write it as
$\operatorname{cosec} x=\frac{1}{\sin x}=\frac{1}{\left(-\frac{\sqrt{3}}{2}\right)}=-\frac{2}{\sqrt{3}}$
So we get
$\tan x=\frac{\sin x}{\cos x}=\frac{\left(-\frac{\sqrt{3}}{2}\right)}{\left(-\frac{1}{2}\right)}=\sqrt{3}$
Here
$\cot x=\frac{1}{\tan x}=\frac{1}{\sqrt{3}}$
2. $\sin x=3 / 5$, x lies in second quadrant.

Solution:

It is given that
$\sin x=3 / 5$
We can write it as
$\operatorname{cosec} x=\frac{1}{\sin x}=\frac{1}{\left(\frac{3}{5}\right)}=\frac{5}{3}$
We know that
$\sin ^{2} \mathrm{x}+\cos ^{2} \mathrm{x}=1$
We can write it as
$\cos ^{2} \mathrm{x}=1-\sin ^{2} \mathrm{x}$
Substituting the values
$\cos ^{2} x=1-(3 / 5)^{2}$
$\cos ^{2} x=1-9 / 25$
$\cos ^{2} x=16 / 25$
$\cos x= \pm 4 / 5$
Here x lies in the second quadrant so the value of $\cos \mathrm{x}$ will be negative $\cos x=-4 / 5$
We can write it as

$$
\sec x=\frac{1}{\cos x}=\frac{1}{\left(-\frac{4}{5}\right)}=-\frac{5}{4}
$$

So we get
$\tan x=\frac{\sin x}{\cos x}=\frac{\left(\frac{3}{5}\right)}{\left(-\frac{4}{5}\right)}=-\frac{3}{4}$

Here

$\cot x=\frac{1}{\tan x}=-\frac{4}{3}$
3. $\cot x=3 / 4$, x lies in third quadrant.

Solution:
It is given that
$\cot \mathrm{x}=3 / 4$
We can write it as
$\tan x=\frac{1}{\cot x}=\frac{1}{\left(\frac{3}{4}\right)}=\frac{4}{3}$
We know that
$1+\tan ^{2} x=\sec ^{2} x$
We can write it as
$1+(4 / 3)^{2}=\sec ^{2} x$

Substituting the values
$1+16 / 9=\sec ^{2} x$
$\cos ^{2} x=25 / 9$
$\sec x= \pm 5 / 3$
Here x lies in the third quadrant so the value of sec x will be negative
$\sec x=-5 / 3$
We can write it as
$\cos x=\frac{1}{\sec x}=\frac{1}{\left(-\frac{5}{3}\right)}=-\frac{3}{5}$
So we get
$\tan x=\frac{\sin x}{\cos x}$
$\frac{4}{3}=\frac{\sin x}{\left(\frac{-3}{5}\right)}$
By further calculation
$\sin x=\left(\frac{4}{3}\right) \times\left(\frac{-3}{5}\right)=-\frac{4}{5}$
Here
$\operatorname{cosec} x=\frac{1}{\sin x}=-\frac{5}{4}$
4. $\sec x=13 / 5$, x lies in fourth quadrant.

Solution:

It is given that
$\sec x=13 / 5$
We can write it as
$\cos x=\frac{1}{\sec x}=\frac{1}{\left(\frac{13}{5}\right)}=\frac{5}{13}$
We know that
$\sin ^{2} \mathrm{x}+\cos ^{2} \mathrm{x}=1$
We can write it as
$\sin ^{2} \mathrm{x}=1-\cos ^{2} \mathrm{x}$
Substituting the values
$\sin ^{2} x=1-(5 / 13)^{2}$
$\sin ^{2} x=1-25 / 169=144 / 169$
$\sin ^{2} x= \pm 12 / 13$
Here x lies in the fourth quadrant so the value of $\sin x$ will be negative
$\sin x=-12 / 13$
We can write it as
$\operatorname{cosec} x=\frac{1}{\sin x}=\frac{1}{\left(-\frac{12}{13}\right)}=-\frac{13}{12}$
So we get
$\tan x=\frac{\sin x}{\cos x}=\frac{\left(\frac{-12}{13}\right)}{\left(\frac{5}{13}\right)}=-\frac{12}{5}$
Here
$\cot x=\frac{1}{\tan x}=\frac{1}{\left(-\frac{12}{5}\right)}=-\frac{5}{12}$
5. $\tan x=-5 / 12$, x lies in second quadrant.

Solution:

It is given that
$\tan \mathrm{x}=-5 / 12$
We can write it as
$\cot x=\frac{1}{\tan x}=\frac{1}{\left(-\frac{5}{12}\right)}=-\frac{12}{5}$
We know that
$1+\tan ^{2} \mathrm{x}=\sec ^{2} \mathrm{x}$
We can write it as
$1+(-5 / 12)^{2}=\sec ^{2} x$
Substituting the values
$1+25 / 144=\sec ^{2} \mathrm{x}$
$\sec ^{2} x=169 / 144$
$\sec x= \pm 13 / 12$
Here x lies in the second quadrant so the value of sec x will be negative
$\sec x=-13 / 12$

We can write it as
$\cos x=\frac{1}{\sec x}=\frac{1}{\left(-\frac{13}{12}\right)}=-\frac{12}{13}$
So we get
$\tan x=\frac{\sin x}{\cos x}$
$-\frac{5}{12}=\frac{\sin x}{\left(-\frac{12}{13}\right)}$
By further calculation
$\sin x=\left(-\frac{5}{12}\right) \times\left(-\frac{12}{13}\right)=\frac{5}{13}$
Here
$\operatorname{cosec} x=\frac{1}{\sin x}=\frac{1}{\left(\frac{5}{13}\right)}=\frac{13}{5}$
Find the values of the trigonometric functions in Exercises 6 to 10.
6. $\sin 765^{\circ}$

Solution:

We know that values of $\sin x$ repeat after an interval of 2π or 360°
So we get
$\sin 765^{\circ}=\sin \left(2 \times 360^{\circ}+45^{\circ}\right)$
By further calculation
$=\sin 45^{\circ}$
$=1 / \sqrt{ } 2$
7. $\operatorname{cosec}\left(-1410^{\circ}\right)$

Solution:

We know that values of $\operatorname{cosec} x$ repeat after an interval of 2π or 360°
So we get
$\operatorname{cosec}\left(-1410^{\circ}\right)=\operatorname{cosec}\left(-1410^{\circ}+4 \times 360^{\circ}\right)$
By further calculation
$=\operatorname{cosec}\left(-1410^{\circ}+1440^{\circ}\right)$
$=\operatorname{cosec} 30^{\circ}=2$
8. $\tan \frac{19 \pi}{3}$

Solution:

We know that values of $\tan \mathrm{x}$ repeat after an interval of π or 180°
So we get
$\tan \frac{19 \pi}{3}=\tan 6 \frac{1}{3} \pi$
By further calculation
$=\tan \left(6 \pi+\frac{\pi}{3}\right)=\tan \frac{\pi}{3}$
We get
$=\tan 60^{\circ}$
$=\sqrt{ } 3$
9.
$\sin \left(-\frac{11 \pi}{3}\right)$

Solution:

We know that values of $\sin x$ repeat after an interval of 2π or 360°
So we get
$\sin \left(-\frac{11 \pi}{3}\right)=\sin \left(-\frac{11 \pi}{3}+2 \times 2 \pi\right)$
By further calculation
$=\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}$
10. $\cot \left(-\frac{15 \pi}{4}\right)$

Solution:

We know that values of $\tan \mathrm{x}$ repeat after an interval of π or 180°
So we get

$$
\cot \left(-\frac{15 \pi}{4}\right)=\cot \left(-\frac{15 \pi}{4}+4 \pi\right)
$$

By further calculation
$=\cot \frac{\pi}{4}=1$

