EXERCISE 3.4

Find the principal and general solutions of the following equations:

1. $\boldsymbol{\operatorname { t a n }} \boldsymbol{x}=\sqrt{ } \mathbf{3}$

Solution:
It is given that
$\tan \mathrm{x}=\sqrt{ } 3$
We know that
$\tan \frac{\pi}{3}=\sqrt{3}$
It can be written as
$\tan \left(\frac{4 \pi}{3}\right)=\tan \left(\pi+\frac{\pi}{3}\right)$
So we get
$=\tan \frac{\pi}{3}=\sqrt{3}$
Hence, the principal solutions are $x=\pi / 3$ and $4 \pi / 3$
$\tan \mathrm{x}=\tan \frac{\pi}{3}$
We get
$\mathrm{x}=\mathrm{n} \pi+\frac{\pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$
Hence, the general solution is
$\mathrm{x}=\mathrm{n} \pi+\frac{\pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$
2. $\sec \mathrm{x}=2$

Solution:

It is given that
$\sec \mathrm{x}=2$
We know that
$\sec \frac{\pi}{3}=2$
It can be written as
$\sec \frac{5 \pi}{3}=\sec \left(2 \pi-\frac{\pi}{3}\right)$
So we get
$=\sec \frac{\pi}{3}=2$
Hence, the principal solutions are $x=\pi / 3$ and $5 \pi / 3$.

$$
\sec x=\sec \frac{\pi}{3}
$$

We know that $\sec \mathrm{x}=1 / \cos \mathrm{x}$

$$
\cos x=\cos \frac{\pi}{3}
$$

So we get
$x=2 n \pi \pm \frac{\pi}{3}$, where $n \in Z$
Hence, the general solution is
$x=2 n \pi \pm \frac{\pi}{3}$, where $n \in Z$
3. $\cot x=-\sqrt{3}$

Solution:
It is given that
$\cot x=-\sqrt{3}$
We know that
$\cot \frac{\pi}{6}=\sqrt{3}$
It can be written as
$\cot \left(\pi-\frac{\pi}{6}\right)=-\cot \frac{\pi}{6}=-\sqrt{3}$
And
$\cot \left(2 \pi-\frac{\pi}{6}\right)=-\cot \frac{\pi}{6}=-\sqrt{3}$
So we get
$\cot \frac{5 \pi}{6}=-\sqrt{3}$ and $\cot \frac{11 \pi}{6}=-\sqrt{3}$

Hence, the principal solutions are $x=5 \pi / 6$ and $11 \pi / 6$.
$\cot x=\cot \frac{5 \pi}{6}$
We know that $\cot \mathrm{x}=1 / \tan \mathrm{x}$
$\tan \mathrm{x}=\tan \frac{5 \pi}{6}$
So we get
$x=n \pi+\frac{5 \pi}{6}$, where $n \in Z$
Hence, the general solution is
$x=n \pi+\frac{5 \pi}{6}$, where $n \in Z$
4. $\operatorname{cosec} \mathrm{x}=-2$

Solution:
It is given that
$\operatorname{cosec} \mathrm{x}=-2$
We know that
$\operatorname{cosec} \frac{\pi}{6}=2$
It can be written as
$\operatorname{cosec}\left(\pi+\frac{\pi}{6}\right)=-\operatorname{cosec} \frac{\pi}{6}=-2$
And
$\operatorname{cosec}\left(2 \pi-\frac{\pi}{6}\right)=-\operatorname{cosec} \frac{\pi}{6}=-2$
So we get
$\operatorname{cosec} \frac{7 \pi}{6}=-2$ and $\operatorname{cosec} \frac{11 \pi}{6}=-2$
Hence, the principal solutions are $\mathrm{x}=7 \pi / 6$ and $11 \pi / 6$.
$\operatorname{cosec} x=\operatorname{cosec} \frac{7 \pi}{6}$

We know that $\operatorname{cosec} x=1 / \sin x$

$$
\sin x=\sin \frac{7 \pi}{6}
$$

So we get

$$
x=n \pi+(-1)^{n} \frac{7 \pi}{6}, \text { where } n \in Z
$$

Hence, the general solution is

$$
\mathrm{x}=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{7 \pi}{6}, \text { where } \mathrm{n} \in \mathrm{Z}
$$

Find the general solution for each of the following equations:
5. $\cos 4 x=\cos 2 x$

Solution:
It is given that
$\cos 4 \mathrm{x}=\cos 2 \mathrm{x}$
We can write it as
$\cos 4 \mathrm{x}-\cos 2 \mathrm{x}=0$
Using the formula
$\cos \mathrm{A}-\cos \mathrm{B}=-2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$.
We get
$-2 \sin \left(\frac{4 x+2 x}{2}\right) \sin \left(\frac{4 x-2 x}{2}\right)=0$
By further simplification
$\sin 3 x \sin x=0$
We can write it as
$\sin 3 x=0$ or $\sin x=0$
By equating the values
$3 x=n \pi$ or $x=n \pi$, where $n \in Z$
We get
$x=n \pi / 3$ or $x=n \pi$, where $n \in Z$
6. $\cos 3 x+\cos x-\cos 2 x=0$

Solution:

It is given that
$\cos 3 \mathrm{x}+\cos \mathrm{x}-\cos 2 \mathrm{x}=0$
We can write it as
$2 \cos \left(\frac{3 x+x}{2}\right) \cos \left(\frac{3 x-x}{2}\right)-\cos 2 x=0$
Using the formula
$\cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$.
We get
$2 \cos 2 \mathrm{x} \cos \mathrm{x}-\cos 2 \mathrm{x}=0$
By further simplification
$\cos 2 \mathrm{x}(2 \cos \mathrm{x}-1)=0$
We can write it as
$\cos 2 \mathrm{x}=0$ or $2 \cos \mathrm{x}-1=0$
$\cos 2 x=0$ or $\cos x=1 / 2$
By equating the values
$2 \mathrm{x}=(2 \mathrm{n}+1) \frac{\pi}{2} \quad$ or $\quad \cos \mathrm{x}=\cos \frac{\pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$
We get
$x=(2 n+1) \frac{\pi}{4} \quad$ or $\quad x=2 n \pi \pm \frac{\pi}{3}$, where $n \in Z$
7. $\sin 2 x+\cos x=0$

Solution:

It is given that
$\sin 2 \mathrm{x}+\cos \mathrm{x}=0$
We can write it as
$2 \sin x \cos x+\cos x=0$
$\cos x(2 \sin x+1)=0$
$\cos \mathrm{x}=0$ or $2 \sin \mathrm{x}+1=0$
Let $\cos x=0$
$\cos x=(2 n+1) \frac{\pi}{2}$, where $n \in Z$
$2 \sin x+1=0$
So we get
$\sin x=\frac{-1}{2}=-\sin \frac{\pi}{6}$
We can write it as
$=\sin \left(\pi+\frac{\pi}{6}\right)=\sin \left(\pi+\frac{\pi}{6}\right)$
$=\sin \frac{7 \pi}{6}$
We get
$\mathrm{x}=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{7 \pi}{6}$, where $\mathrm{n} \in \mathrm{Z}$
Hence, the general solution is
$(2 \mathrm{n}+1) \frac{\pi}{2}$ or $\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{7 \pi}{6}, \mathrm{n} \in \mathrm{Z}$
8. $\sec ^{2} 2 x=1-\tan 2 x$

Solution:
It is given that
$\sec ^{2} 2 \mathrm{x}=1-\tan 2 \mathrm{x}$
We can write it as
$1+\tan ^{2} 2 \mathrm{x}=1-\tan 2 \mathrm{x}$
$\tan ^{2} 2 \mathrm{x}+\tan 2 \mathrm{x}=0$
Taking common terms
$\tan 2 \mathrm{x}(\tan 2 \mathrm{x}+1)=0$
Here
$\tan 2 \mathrm{x}=0$ or $\tan 2 \mathrm{x}+1=0$
If $\tan 2 x=0$
$\tan 2 \mathrm{x}=\tan 0$
We get
$2 \mathrm{x}=\mathrm{n} \pi+0$, where $\mathrm{n} \in \mathrm{Z}$
$x=n \pi / 2$, where $n \in Z$
$\tan 2 \mathrm{x}+1=0$
We can write it as
$\tan 2 \mathrm{x}=-1$
So we get
$=-\tan \frac{\pi}{4}=\tan \left(\pi-\frac{\pi}{4}\right)$
$=\tan \frac{3 \pi}{4}$
Here
$2 \mathrm{x}=\mathrm{n} \pi+3 \pi / 4$, where $\mathrm{n} \in \mathrm{Z}$
$\mathrm{x}=\mathrm{n} \pi / 2+3 \pi / 8$, where $\mathrm{n} \in \mathrm{Z}$
Hence, the general solution is $n \pi / 2$ or $n \pi / 2+3 \pi / 8, n \in Z$.
9. $\sin x+\sin 3 x+\sin 5 x=0$

Solution:

It is given that
$\sin \mathrm{x}+\sin 3 \mathrm{x}+\sin 5 \mathrm{x}=0$
We can write it as
$(\sin \mathrm{x}+\sin 5 \mathrm{x})+\sin 3 \mathrm{x}=0$
Using the formula
$\sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$
$\left[2 \sin \left(\frac{x+5 x}{2}\right) \cos \left(\frac{x-5 x}{2}\right)\right]+\sin 3 x=0$
By further calculation
$2 \sin 3 x \cos (-2 x)+\sin 3 x=0$
It can be written as
$2 \sin 3 \mathrm{x} \cos 2 \mathrm{x}+\sin 3 \mathrm{x}=0$
By taking out the common terms
$\sin 3 x(2 \cos 2 x+1)=0$
Here
$\sin 3 \mathrm{x}=0$ or $2 \cos 2 \mathrm{x}+1=0$
If $\sin 3 x=0$
$3 \mathrm{x}=\mathrm{n} \pi$, where $\mathrm{n} \in \mathrm{Z}$
We get
$x=n \pi / 3$, where $n \in Z$
If $2 \cos 2 x+1=0$
$\cos 2 \mathrm{x}=-1 / 2$
By further simplification
$=-\cos \pi / 3$
$=\cos (\pi-\pi / 3)$
So we get
$\cos 2 x=\cos 2 \pi / 3$
Here
$2 \mathrm{x}=2 \mathrm{n} \pi \pm \frac{2 \pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$

Dividing by 2
$\mathrm{x}=\mathrm{n} \pi \pm \frac{\pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$
Hence, the general solution is

$$
\frac{\mathrm{n} \pi}{3} \text { or } \mathrm{n} \pi \pm \frac{\pi}{3}, \mathrm{n} \in \mathrm{Z}
$$

