EXERCISE 3.1

1. Find the radian measures corresponding to the following degree measures:
(i) 25° (ii) $-47^{\circ} 30^{\prime}$ (iii) 240° (iv) 520°

Solution:
(i) 25°

Here $180^{\circ}=\pi$ radian
It can be written as
$25^{\circ}=\frac{\pi}{180} \times 25$ radian
So we get
$=\frac{5 \pi}{36}$ radian
(ii) $-47^{\circ} 30^{\prime}$

Here $1^{\circ}=60^{\prime}$
It can be written as
$-47^{\circ} 30^{\prime}=-47 \frac{1}{2}$ degree
So we get
$=\frac{-95}{2}$ degree
Here $180^{\circ}=\pi$ radian
$\frac{-95}{2}$ deg ree $=\frac{\pi}{180} \times\left(\frac{-95}{2}\right)$ radian
It can be written as
$=\left(\frac{-19}{36 \times 2}\right) \pi$ radian $=\frac{-19}{72} \pi$ radian
We get
$-47^{\circ} 30^{\prime}=\frac{-19}{72} \pi$ radian
(iii) 240°

Here $180^{\circ}=\pi$ radian
It can be written as

$$
240^{\circ}=\frac{\pi}{180} \times 240 \text { radian }
$$

So we get
$=\frac{4}{3} \pi$ radian
(iv) 520°

Here $180^{\circ}=\pi$ radian
It can be written as
$520^{\circ}=\frac{\pi}{180} \times 520$ radian
So we get
$=\frac{26 \pi}{9}$ radian
2. Find the degree measures corresponding to the following radian measures (Use $\boldsymbol{\pi}=\mathbf{2 2} / 7$)
(i) $11 / 16$
(ii) -4
(iii) $5 \pi / 3$
(iv) $7 \pi / 6$

Solution:
(i) $11 / 16$

Here π radian $=180^{\circ}$
$\frac{11}{16}$ radain $=\frac{180}{\pi} \times \frac{11}{16}$ deg ree
We can write it as
$=\frac{45 \times 11}{\pi \times 4}$ deg ree
So we get
$=\frac{45 \times 11 \times 7}{22 \times 4}$ deg ree
$=\frac{315}{8}$ degree
$=39 \frac{3}{8}$ deg ree
Take $1^{\circ}=60^{\circ}$
$=39^{\circ}+\frac{3 \times 60}{8} \mathrm{~min}$ utes
We get
$=39^{\circ}+22^{\prime}+\frac{1}{2}$ min utes
Consider $1^{\circ}=60^{\circ}$
$=39^{\circ} 22^{\prime} 30^{\prime \prime}$
(ii) -4

Here π radian $=180^{\circ}$
-4 radian $=\frac{180}{\pi} \times(-4)$ deg ree
We can write it as
$=\frac{180 \times 7(-4)}{22}$ deg ree
By further calculation
$=\frac{-2520}{11}$ deg ree $=-229 \frac{1}{11}$ deg ree
Take $1^{\circ}=60^{\circ}$
$=-229^{\circ}+\frac{1 \times 60}{11} \mathrm{~min}$ utes
So we get
$=-229^{\circ}+5^{\prime}+\frac{5}{11}$ min utes
Again $1^{\prime}=60^{\prime \prime}$
$=-229^{\circ} 5^{\prime} 27^{\prime \prime}$
(iii) $5 \pi / 3$

Here π radian $=180^{\circ}$
$\frac{5 \pi}{3}$ radian $=\frac{180}{\pi} \times \frac{5 \pi}{3}$ deg ree
We get
$=300^{\circ}$
(iv) $7 \pi / 6$

Here π radian $=180^{\circ}$
$\frac{7 \pi}{6}$ radian $=\frac{180}{\pi} \times \frac{7 \pi}{6}$
We get
$=210^{\circ}$
3. A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

Solution:

It is given that
No. of revolutions made by the wheel in
1 minute $=360$
1 second $=360 / 60=6$
We know that
The wheel turns an angle of 2π radian in one complete revolution.
In 6 complete revolutions, it will turn an angle of $6 \times 2 \pi$ radian $=12 \pi$ radian

Therefore, in one second, the wheel turns an angle of 12π radian.
4. Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm (Use $\pi=22 / 7$).

Solution:

Consider a circle of radius r unit with 1 unit as the arc length which subtends an angle θ radian at the centre
$\theta=1 / \mathrm{r}$
Here $\mathrm{r}=100 \mathrm{~cm}, 1=22 \mathrm{~cm}$
$\theta=\frac{22}{100}$ radian $=\frac{180}{\pi} \times \frac{22}{100}$ deg ree
It can be written as
$=\frac{180 \times 7 \times 22}{22 \times 100}$ deg ree
$=\frac{126}{10} \mathrm{deg}$ ree
So we get
$=12 \frac{3}{5}$ deg ree
Here $1^{\circ}=60^{\circ}$
$=12^{\circ} 36^{\circ}$
Therefore, the required angle is $12^{\circ} 36^{\prime}$.
5. In a circle of diameter 40 cm , the length of a chord is 20 cm . Find the length of minor arc of the chord.

Solution:

The dimensions of the circle are
Diameter $=40 \mathrm{~cm}$
Radius $=40 / 2=20 \mathrm{~cm}$
Consider AB be as the chord of the circle i.e. length $=20 \mathrm{~cm}$

In $\triangle \mathrm{OAB}$,
Radius of circle $=\mathrm{OA}=\mathrm{OB}=20 \mathrm{~cm}$
Similarly $\mathrm{AB}=20 \mathrm{~cm}$
Hence, $\triangle \mathrm{OAB}$ is an equilateral triangle.
$\theta=60^{\circ}=\pi / 3$ radian
In a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre

We get $\theta=1 / \mathrm{r}$

$$
\frac{\pi}{3}=\frac{\overparen{\mathrm{AB}}}{20} \Rightarrow \overparen{\mathrm{AB}}=\frac{20 \pi}{3} \mathrm{~cm}
$$

Therefore, the length of the minor arc of the chord is $20 \pi / 3 \mathrm{~cm}$.
6. If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.

Solution:

Consider r_{1} and r_{2} as the radii of the two circles.
Let an arc of length 1 subtend an angle of 60° at the centre of the circle of radius r_{1} and an arc of length
1 subtend an angle of 75° at the centre of the circle of radius r_{2}.
Here $60^{\circ}=\pi / 3$ radian and $75^{\circ}=5 \pi / 12$ radian
In a circle of radius r unit, if an arc of length 1 unit subtends an angle θ radian at the centre
We get
$\theta=1 / \mathrm{r}$ or $1=\mathrm{r} \theta$
We know that
$l=\frac{r_{1} \pi}{3}$ and $l=\frac{r_{2} 5 \pi}{12}$
By equating both we get
$\frac{r_{1} \pi}{3}=\frac{r_{2} 5 \pi}{12}$
On further calculation
$r_{1}=\frac{r_{2} 5}{4}$
So we get
$\frac{r_{1}}{r_{2}}=\frac{5}{4}$
Therefore, the ratio of the radii is $5: 4$.
7. Find the angle in radian though which a pendulum swings if its length is 75 cm and the tip describes an arc of length
(i) 10 cm (ii) 15 cm (iii) 21 cm

Solution:
In a circle of radius r unit, if an arc of length 1 unit subtends an angle θ radian at the centre, then $\theta=1 / r$
We know that $\mathrm{r}=75 \mathrm{~cm}$
(i) $1=10 \mathrm{~cm}$

So we get
$\theta=10 / 75$ radian
By further simplification
$\theta=2 / 15$ radian
(ii) $\mathrm{l}=15 \mathrm{~cm}$

So we get
$\theta=15 / 75$ radian
By further simplification
$\theta=1 / 5$ radian
(iii) $1=21 \mathrm{~cm}$

So we get
$\theta=21 / 75$ radian
By further simplification
$\theta=7 / 25$ radian

EXERCISE 3.2

Find the values of other five trigonometric functions in Exercises 1 to 5.

1. $\cos x=-1 / 2$, x lies in third quadrant.

Solution:
It is given that
$\cos x=-1 / 2$
$\sec x=1 / \cos x$
Substituting the values
$=\frac{1}{\left(-\frac{1}{2}\right)}=-2$
Consider
$\sin ^{2} x+\cos ^{2} x=1$
We can write it as
$\sin ^{2} x=1-\cos ^{2} x$
Substituting the values
$\sin ^{2} x=1-(-1 / 2)^{2}$
$\sin ^{2} x=1-1 / 4=3 / 4$
$\sin ^{2} x= \pm \sqrt{3} / 2$
Here x lies in the third quadrant so the value of $\sin x$ will be negative $\sin x=-\sqrt{3} / 2$
We can write it as
$\operatorname{cosec} x=\frac{1}{\sin x}=\frac{1}{\left(-\frac{\sqrt{3}}{2}\right)}=-\frac{2}{\sqrt{3}}$
So we get
$\tan x=\frac{\sin x}{\cos x}=\frac{\left(-\frac{\sqrt{3}}{2}\right)}{\left(-\frac{1}{2}\right)}=\sqrt{3}$
Here
$\cot x=\frac{1}{\tan x}=\frac{1}{\sqrt{3}}$
2. $\sin x=3 / 5$, x lies in second quadrant.

Solution:

It is given that
$\sin x=3 / 5$
We can write it as
$\operatorname{cosec} x=\frac{1}{\sin x}=\frac{1}{\left(\frac{3}{5}\right)}=\frac{5}{3}$
We know that
$\sin ^{2} \mathrm{x}+\cos ^{2} \mathrm{x}=1$
We can write it as
$\cos ^{2} \mathrm{x}=1-\sin ^{2} \mathrm{x}$
Substituting the values
$\cos ^{2} x=1-(3 / 5)^{2}$
$\cos ^{2} x=1-9 / 25$
$\cos ^{2} x=16 / 25$
$\cos x= \pm 4 / 5$
Here x lies in the second quadrant so the value of $\cos \mathrm{x}$ will be negative $\cos x=-4 / 5$
We can write it as

$$
\sec x=\frac{1}{\cos x}=\frac{1}{\left(-\frac{4}{5}\right)}=-\frac{5}{4}
$$

So we get
$\tan x=\frac{\sin x}{\cos x}=\frac{\left(\frac{3}{5}\right)}{\left(-\frac{4}{5}\right)}=-\frac{3}{4}$

Here

$\cot x=\frac{1}{\tan x}=-\frac{4}{3}$
3. $\cot x=3 / 4$, x lies in third quadrant.

Solution:
It is given that
$\cot \mathrm{x}=3 / 4$
We can write it as
$\tan x=\frac{1}{\cot x}=\frac{1}{\left(\frac{3}{4}\right)}=\frac{4}{3}$
We know that
$1+\tan ^{2} x=\sec ^{2} x$
We can write it as
$1+(4 / 3)^{2}=\sec ^{2} x$

Substituting the values
$1+16 / 9=\sec ^{2} x$
$\cos ^{2} x=25 / 9$
$\sec x= \pm 5 / 3$
Here x lies in the third quadrant so the value of $\sec \mathrm{x}$ will be negative
$\sec x=-5 / 3$
We can write it as
$\cos x=\frac{1}{\sec x}=\frac{1}{\left(-\frac{5}{3}\right)}=-\frac{3}{5}$
So we get
$\tan x=\frac{\sin x}{\cos x}$
$\frac{4}{3}=\frac{\sin x}{\left(\frac{-3}{5}\right)}$
By further calculation
$\sin x=\left(\frac{4}{3}\right) \times\left(\frac{-3}{5}\right)=-\frac{4}{5}$
Here
$\operatorname{cosec} x=\frac{1}{\sin x}=-\frac{5}{4}$
4. $\sec x=13 / 5$, x lies in fourth quadrant.

Solution:

It is given that
$\sec x=13 / 5$
We can write it as
$\cos x=\frac{1}{\sec x}=\frac{1}{\left(\frac{13}{5}\right)}=\frac{5}{13}$
We know that
$\sin ^{2} \mathrm{x}+\cos ^{2} \mathrm{x}=1$
We can write it as
$\sin ^{2} x=1-\cos ^{2} x$
Substituting the values
$\sin ^{2} \mathrm{x}=1-(5 / 13)^{2}$
$\sin ^{2} x=1-25 / 169=144 / 169$
$\sin ^{2} x= \pm 12 / 13$
Here x lies in the fourth quadrant so the value of $\sin x$ will be negative
$\sin x=-12 / 13$
We can write it as
$\operatorname{cosec} x=\frac{1}{\sin x}=\frac{1}{\left(-\frac{12}{13}\right)}=-\frac{13}{12}$
So we get
$\tan x=\frac{\sin x}{\cos x}=\frac{\left(\frac{-12}{13}\right)}{\left(\frac{5}{13}\right)}=-\frac{12}{5}$
Here
$\cot x=\frac{1}{\tan x}=\frac{1}{\left(-\frac{12}{5}\right)}=-\frac{5}{12}$
5. $\tan x=-5 / 12$, x lies in second quadrant.

Solution:

It is given that
$\tan \mathrm{x}=-5 / 12$
We can write it as
$\cot x=\frac{1}{\tan x}=\frac{1}{\left(-\frac{5}{12}\right)}=-\frac{12}{5}$
We know that
$1+\tan ^{2} x=\sec ^{2} x$
We can write it as
$1+(-5 / 12)^{2}=\sec ^{2} \mathrm{x}$
Substituting the values
$1+25 / 144=\sec ^{2} x$
$\sec ^{2} x=169 / 144$
$\sec x= \pm 13 / 12$
Here x lies in the second quadrant so the value of $\sec \mathrm{x}$ will be negative
$\sec x=-13 / 12$

We can write it as
$\cos x=\frac{1}{\sec x}=\frac{1}{\left(-\frac{13}{12}\right)}=-\frac{12}{13}$
So we get
$\tan x=\frac{\sin x}{\cos x}$
$-\frac{5}{12}=\frac{\sin x}{\left(-\frac{12}{13}\right)}$
By further calculation
$\sin x=\left(-\frac{5}{12}\right) \times\left(-\frac{12}{13}\right)=\frac{5}{13}$
Here
$\operatorname{cosec} x=\frac{1}{\sin x}=\frac{1}{\left(\frac{5}{13}\right)}=\frac{13}{5}$
Find the values of the trigonometric functions in Exercises 6 to 10.
6. $\sin 765^{\circ}$

Solution:

We know that values of $\sin x$ repeat after an interval of 2π or 360°
So we get
$\sin 765^{\circ}=\sin \left(2 \times 360^{\circ}+45^{\circ}\right)$
By further calculation
$=\sin 45^{\circ}$
$=1 / \sqrt{ } 2$
7. $\operatorname{cosec}\left(-1410^{\circ}\right)$

Solution:

We know that values of cosec x repeat after an interval of 2π or 360°
So we get
$\operatorname{cosec}\left(-1410^{\circ}\right)=\operatorname{cosec}\left(-1410^{\circ}+4 \times 360^{\circ}\right)$
By further calculation
$=\operatorname{cosec}\left(-1410^{\circ}+1440^{\circ}\right)$
$=\operatorname{cosec} 30^{\circ}=2$
8. $\tan \frac{19 \pi}{3}$

Solution:

We know that values of $\tan \mathrm{x}$ repeat after an interval of π or 180°
So we get
$\tan \frac{19 \pi}{3}=\tan 6 \frac{1}{3} \pi$
By further calculation
$=\tan \left(6 \pi+\frac{\pi}{3}\right)=\tan \frac{\pi}{3}$
We get
$=\tan 60^{\circ}$
$=\sqrt{ } 3$
9.
$\sin \left(-\frac{11 \pi}{3}\right)$

Solution:

We know that values of $\sin x$ repeat after an interval of 2π or 360°
So we get
$\sin \left(-\frac{11 \pi}{3}\right)=\sin \left(-\frac{11 \pi}{3}+2 \times 2 \pi\right)$
By further calculation
$=\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}$
10. $\cot \left(-\frac{15 \pi}{4}\right)$

Solution:

We know that values of $\tan \mathrm{x}$ repeat after an interval of π or 180°
So we get

$$
\cot \left(-\frac{15 \pi}{4}\right)=\cot \left(-\frac{15 \pi}{4}+4 \pi\right)
$$

By further calculation
$=\cot \frac{\pi}{4}=1$

Prove that:
1.
$\sin ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{3}-\tan ^{2} \frac{\pi}{4}=-\frac{1}{2}$
Solution:
Consider
L.H.S. $=\sin ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{3}-\tan ^{2} \frac{\pi}{4}$

So we get
$=\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}-(1)^{2}$
By further calculation
$=1 / 4+1 / 4-1$
$=-1 / 2$
$=$ RHS
2.
$2 \sin ^{2} \frac{\pi}{6}+\operatorname{cosec}^{2} \frac{7 \pi}{6} \cos ^{2} \frac{\pi}{3}=\frac{3}{2}$
Solution:

Consider
L.H.S. $=2 \sin ^{2} \frac{\pi}{6}+\operatorname{cosec}^{2} \frac{7 \pi}{6} \cos ^{2} \frac{\pi}{3}$

By further calculation
$=2\left(\frac{1}{2}\right)^{2}+\operatorname{cosec}^{2}\left(\pi+\frac{\pi}{6}\right)\left(\frac{1}{2}\right)^{2}$
It can be written as
$=2 \times \frac{1}{4}+\left(-\operatorname{cosec} \frac{\pi}{6}\right)^{2}\left(\frac{1}{4}\right)$
So we get
$=\frac{1}{2}+(-2)^{2}\left(\frac{1}{4}\right)$
Here
$=1 / 2+4 / 4$
$=1 / 2+1$
$=3 / 2$
$=$ RHS
3.
$\cot ^{2} \frac{\pi}{6}+\operatorname{cosec} \frac{5 \pi}{6}+3 \tan ^{2} \frac{\pi}{6}=6$
Solution:

Consider

$$
\text { L.H.S }=\cot ^{2} \frac{\pi}{6}+\operatorname{cosec} \frac{5 \pi}{6}+3 \tan ^{2} \frac{\pi}{6}
$$

So we get

$$
=(\sqrt{3})^{2}+\operatorname{cosec}\left(\pi-\frac{\pi}{6}\right)+3\left(\frac{1}{\sqrt{3}}\right)^{2}
$$

By further calculation
$=3+\operatorname{cosec} \frac{\pi}{6}+3 \times \frac{1}{3}$
We get
$=3+2+1$
$=6$
$=$ RHS
4.
$2 \sin ^{2} \frac{3 \pi}{4}+2 \cos ^{2} \frac{\pi}{4}+2 \sec ^{2} \frac{\pi}{3}=10$
Solution:
Consider
L.H.S $=2 \sin ^{2} \frac{3 \pi}{4}+2 \cos ^{2} \frac{\pi}{4}+2 \sec ^{2} \frac{\pi}{3}$

So we get
$=2\left\{\sin \left(\pi-\frac{\pi}{4}\right)\right\}^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}+2(2)^{2}$
By further calculation
$=2\left\{\sin \frac{\pi}{4}\right\}^{2}+2 \times \frac{1}{2}+8$
It can be written as
$=2\left(\frac{1}{\sqrt{2}}\right)^{2}+1+8$
$=1+1+8$
$=10$
$=$ RHS
5. Find the value of:
(i) $\sin 75^{\circ}$
(ii) $\boldsymbol{\operatorname { t a n }} 15^{\circ}$

Solution:
(i) $\sin 75^{\circ}$

It can be written as
$=\sin \left(45^{\circ}+30^{\circ}\right)$

Using the formula $[\sin (x+y)=\sin x \cos y+\cos x \sin y]$
$=\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ}$
Substituting the values
$=\left(\frac{1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}}{2}\right)+\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right)$
By further calculation
$=\frac{\sqrt{3}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}$
$=\frac{\sqrt{3}+1}{2 \sqrt{2}}$
(ii) $\tan 15^{\circ}$

It can be written as
$=\tan \left(45^{\circ}-30^{\circ}\right)$
Using formula
$\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}$

$$
=\frac{\tan 45^{\circ}-\tan 30^{\circ}}{1+\tan 45^{\circ} \tan 30^{\circ}}
$$

Substituting the values

$$
=\frac{1-\frac{1}{\sqrt{3}}}{1+1\left(\frac{1}{\sqrt{3}}\right)}=\frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3}+1}{\sqrt{3}}}
$$

By further calculation

$$
=\frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)(\sqrt{3}-1)}
$$

So we get

$$
\begin{aligned}
& =\frac{3+1-2 \sqrt{3}}{(\sqrt{3})^{2}-(1)^{2}} \\
& =\frac{4-2 \sqrt{3}}{3-1}=2-\sqrt{3}
\end{aligned}
$$

Prove the following:
6.

$$
\cos \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-y\right)-\sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}-y\right)=\sin (x+y)
$$

Solution:

Consider LHS $=$

$$
\cos \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-y\right)-\sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}-y\right)
$$

We can write it as

$$
=\frac{1}{2}\left[2 \cos \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-y\right)\right]+\frac{1}{2}\left[-2 \sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}-y\right)\right]
$$

By further simplification

$$
=\frac{1}{2}\left[\cos \left\{\left(\frac{\pi}{4}-x\right)+\left(\frac{\pi}{4}-y\right)\right\}+\cos \left\{\left(\frac{\pi}{4}-x\right)-\left(\frac{\pi}{4}-y\right)\right\}\right]
$$

$+\frac{1}{2}\left[\cos \left\{\left(\frac{\pi}{4}-x\right)+\left(\frac{\pi}{4}-y\right)\right\}-\cos \left\{\left(\frac{\pi}{4}-x\right)-\left(\frac{\pi}{4}-y\right)\right\}\right]$
Using the formula
$2 \cos A \cos B=\cos (A+B)+\cos (A-B)$
$-2 \sin A \sin B=\cos (A+B)-\cos (A-B)$
$=2 \times \frac{1}{2}\left[\cos \left\{\left(\frac{\pi}{4}-x\right)+\left(\frac{\pi}{4}-y\right)\right\}\right]$
We get

$$
\begin{aligned}
& =\cos \left[\frac{\pi}{2}-(x+y)\right] \\
& =\sin (x+y) \\
& =\text { RHS }
\end{aligned}
$$

7.

$$
\frac{\tan \left(\frac{\pi}{4}+x\right)}{\tan \left(\frac{\pi}{4}-x\right)}=\left(\frac{1+\tan x}{1-\tan x}\right)^{2}
$$

Solution:
Consider
L.H.S. $=\frac{\tan \left(\frac{\pi}{4}+x\right)}{\tan \left(\frac{\pi}{4}-x\right)}$

By using the formula
$\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$ and $\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$
So we get
$=\frac{\left(\frac{\tan \frac{\pi}{4}+\tan x}{1-\tan \frac{\pi}{4} \tan x}\right)}{\left(\frac{\tan \frac{\pi}{4}-\tan x}{1+\tan \frac{\pi}{4} \tan x}\right)}$

It can be written as
$=\frac{\left(\frac{1+\tan x}{1-\tan x}\right)}{\left(\frac{1-\tan x}{1+\tan x}\right)}$
$=\left(\frac{1+\tan x}{1-\tan x}\right)^{2}$
$=$ RHS
8.
$\frac{\cos (\pi+x) \cos (-x)}{\sin (\pi-x) \cos \left(\frac{\pi}{2}+x\right)}=\cot ^{2} x$

Solution:

Consider
L.H.S. $=\frac{\cos (\pi+x) \cos (-x)}{\sin (\pi-x) \cos \left(\frac{\pi}{2}+x\right)}$

It can be written as
$=\frac{[-\cos x][\cos x]}{(\sin x)(-\sin x)}$
So we get
$=\frac{-\cos ^{2} x}{-\sin ^{2} x}$
$=\cot ^{2} \mathrm{x}$
$=$ RHS
9.
$\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)\left[\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right]=1$

Solution:

Consider
L.H.S $=\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)\left[\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right]$

It can be written as
$=\sin \mathrm{x} \cos \mathrm{x}(\tan \mathrm{x}+\cot \mathrm{x})$
So we get
$=\sin x \cos x\left(\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}\right)$
$=(\sin x \cos x)\left\lfloor\frac{\sin ^{2} x+\cos ^{2} x}{\sin x \cos x}\right\rfloor$
$=1$
$=$ RHS
10. $\sin (n+1) x \sin (n+2) x+\cos (n+1) x \cos (n+2) x=\cos x$

Solution:

LHS $=\sin (n+1) x \sin (n+2) x+\cos (n+1) x \cos (n+2) x$
By multiplying and dividing by 2

$$
=\frac{1}{2}[2 \sin (\mathrm{n}+1) \times \sin (\mathrm{n}+2) \mathrm{x}+2 \cos (\mathrm{n}+1) \times \cos (\mathrm{n}+2) \mathrm{x}]
$$

Using the formula
$-2 \sin A \sin B=\cos (A+B)-\cos (A-B)$
$2 \cos A \cos B=\cos (A+B)+\cos (A-B)$
$=\frac{1}{2}\left[\begin{array}{l}\cos \{(\mathrm{n}+1) \mathrm{x}-(\mathrm{n}+2) \mathrm{x}\}-\cos \{(\mathrm{n}+1) \mathrm{x}+(\mathrm{n}+2) \mathrm{x}\} \\ +\cos \{(\mathrm{n}+1) \mathrm{x}+(\mathrm{n}+2) \mathrm{x}\}+\cos \{(\mathrm{n}+1) \mathrm{x}-(\mathrm{n}+2) \mathrm{x}\}\end{array}\right]$
By further calculation
$=\frac{1}{2} \times 2 \cos \{(n+1) x-(n+2) x\}$
$=\cos (-x)$
$=\cos x$
$=$ RHS
11.
$\cos \left(\frac{3 \pi}{4}+x\right)-\cos \left(\frac{3 \pi}{4}-x\right)=-\sqrt{2} \sin x$
Solution:
Consider
L.H.S. $=\cos \left(\frac{3 \pi}{4}+x\right)-\cos \left(\frac{3 \pi}{4}-x\right)$

Using the formula
$\cos \mathrm{A}-\cos \mathrm{B}=-2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cdot \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$
$=-2 \sin \left\{\frac{\left(\frac{3 \pi}{4}+x\right)+\left(\frac{3 \pi}{4}-x\right)}{2}\right\} \cdot \sin \left\{\frac{\left(\frac{3 \pi}{4}+x\right)-\left(\frac{3 \pi}{4}-x\right)}{2}\right\}$
So we get
$=-2 \sin \left(\frac{3 \pi}{4}\right) \sin x$
It can be written as
$=-2 \sin \left(\pi-\frac{\pi}{4}\right) \sin x$
By further calculation
$=-2 \sin \frac{\pi}{4} \sin x$
Substituting the values
$=-2 \times \frac{1}{\sqrt{2}} \times \sin \mathrm{x}$
$=-\sqrt{2} \sin x$
$=$ RHS
12. $\sin ^{2} 6 x-\sin ^{2} 4 x=\sin 2 x \sin 10 x$

Solution:

Consider
L.H.S. $=\sin ^{2} 6 x-\sin ^{2} 4 x$

Using the formula
$\sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$.
$\sin \mathrm{A}-\sin \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$
So we get
$=(\sin 6 x+\sin 4 x)(\sin 6 x-\sin 4 x)$
By further calculation
$=\left[2 \sin \left(\frac{6 x+4 x}{2}\right) \cos \left(\frac{6 x-4 x}{2}\right)\right]\left[2 \cos \left(\frac{6 x+4 x}{2}\right) \cdot \sin \left(\frac{6 x-4 x}{2}\right)\right]$
We get
$=(2 \sin 5 x \cos x)(2 \cos 5 x \sin x)$
It can be written as
$=(2 \sin 5 x \cos 5 x)(2 \sin x \cos x)$
$=\sin 10 \mathrm{x} \sin 2 \mathrm{x}$
$=$ RHS
13. $\cos ^{2} 2 x-\cos ^{2} 6 x=\sin 4 x \sin 8 x$

Solution:

Consider
L.H.S. $=\cos ^{2} 2 x-\cos ^{2} 6 x$

Using the formula
$\cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$
$\cos \mathrm{A}-\cos \mathrm{B}=-2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$
So we get
$=(\cos 2 x+\cos 6 x)(\cos 2 x-6 x)$
By further calculation
$=\left[2 \cos \left(\frac{2 x+6 x}{2}\right) \cos \left(\frac{2 x-6 x}{2}\right)\right]\left[-2 \sin \left(\frac{2 x+6 x}{2}\right) \sin \frac{(2 x-6 x)}{2}\right]$
We get
$=[2 \cos 4 \mathrm{x} \cos (-2 \mathrm{x})][-2 \sin 4 \mathrm{x} \sin (-2 \mathrm{x})]$
It can be written as
$=[2 \cos 4 x \cos 2 x][-2 \sin 4 x(-\sin 2 x)]$
So we get
$=(2 \sin 4 x \cos 4 x)(2 \sin 2 x \cos 2 x)$
$=\sin 8 \mathrm{x} \sin 4 \mathrm{x}$
$=$ RHS
14. $\sin 2 x+2 \sin 4 x+\sin 6 x=4 \cos ^{2} x \sin 4 x$

Solution:

Consider

L.H.S. $=\sin 2 x+2 \sin 4 x+\sin 6 x$
$=[\sin 2 x+\sin 6 x]+2 \sin 4 x$
Using the formula

$$
\begin{aligned}
& \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) . \\
& =\left[2 \sin \left(\frac{2 x+6 x}{2}\right) \cos \left(\frac{2 x-6 x}{2}\right)\right]+2 \sin 4 x
\end{aligned}
$$

By further simplification
$=2 \sin 4 \mathrm{x} \cos (-2 \mathrm{x})+2 \sin 4 \mathrm{x}$
It can be written as
$=2 \sin 4 \mathrm{x} \cos 2 \mathrm{x}+2 \sin 4 \mathrm{x}$
Taking common terms
$=2 \sin 4 \mathrm{x}(\cos 2 \mathrm{x}+1)$
Using the formula
$=2 \sin 4 \mathrm{x}\left(2 \cos ^{2} \mathrm{x}-1+1\right)$
We get
$=2 \sin 4 \mathrm{x}\left(2 \cos ^{2} \mathrm{x}\right)$
$=4 \cos ^{2} \mathrm{x} \sin 4 \mathrm{x}$
= R.H.S.
15. $\cot 4 x(\sin 5 x+\sin 3 x)=\cot x(\sin 5 x-\sin 3 x)$

Solution:

Consider
LHS $=\cot 4 \mathrm{x}(\sin 5 \mathrm{x}+\sin 3 \mathrm{x})$
It can be written as
$=\frac{\cos 4 x}{\sin 4 x}\left[2 \sin \left(\frac{5 x+3 x}{2}\right) \cos \left(\frac{5 x-3 x}{2}\right)\right]$
Using the formula
$\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$.
$=\left(\frac{\cos 4 x}{\sin 4 x}\right)[2 \sin 4 x \cos x]$
So we get
$=2 \cos 4 x \cos x$
Similarly
R.H.S. $=\cot x(\sin 5 x-\sin 3 x)$

It can be written as
$=\frac{\cos x}{\sin x}\left[2 \cos \left(\frac{5 x+3 x}{2}\right) \sin \left(\frac{5 x-3 x}{2}\right)\right]$
Using the formula
$\sin \mathrm{A}-\sin \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$
$=\frac{\cos x}{\sin x}[2 \cos 4 x \sin x]$

So we get
$=2 \cos 4 \mathrm{x} \cos \mathrm{x}$
Hence, LHS = RHS.
16.
$\frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x}=-\frac{\sin 2 x}{\cos 10 x}$
Solution:
Consider
L.H.S $=\frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x}$

Using the formula

$$
\begin{aligned}
& \cos \mathrm{A}-\cos \mathrm{B}=-2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right) \\
& \sin \mathrm{A}-\sin \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right) \\
& =\frac{-2 \sin \left(\frac{9 \mathrm{x}+5 \mathrm{x}}{2}\right) \cdot \sin \left(\frac{9 x-5 \mathrm{x}}{2}\right)}{2 \cos \left(\frac{17 \mathrm{x}+3 \mathrm{x}}{2}\right) \cdot \sin \left(\frac{17 x-3 \mathrm{x}}{2}\right)}
\end{aligned}
$$

By further calculation
$=\frac{-2 \sin 7 x \cdot \sin 2 x}{2 \cos 10 x \cdot \sin 7 x}$
So we get
$=-\frac{\sin 2 x}{\cos 10 x}$
= RHS
17.
$\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}=\tan 4 x$

Solution:

Consider

$$
\text { L.H.S. }=\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}
$$

Using the formula

$$
\begin{aligned}
& \sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right) \\
& \cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right) \\
& =\frac{2 \sin \left(\frac{5 \mathrm{x}+3 \mathrm{x}}{2}\right) \cdot \cos \left(\frac{5 \mathrm{x}-3 \mathrm{x}}{2}\right)}{2 \cos \left(\frac{5 \mathrm{x}+3 \mathrm{x}}{2}\right) \cdot \cos \left(\frac{5 \mathrm{x}-3 \mathrm{x}}{2}\right)}
\end{aligned}
$$

By further calculation
$=\frac{2 \sin 4 x \cdot \cos x}{2 \cos 4 x \cdot \cos x}$
So we get
$=\frac{\sin 4 x}{\cos 4 x}$
$=\tan 4 \mathrm{x}$
$=$ RHS
18.
$\frac{\sin x-\sin y}{\cos x+\cos y}=\tan \frac{x-y}{2}$
Solution:

Consider

L.H.S. $=\frac{\sin x-\sin y}{\cos x+\cos y}$

Using the formula

$$
\begin{aligned}
& \sin \mathrm{A}-\sin \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right) \\
& \cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right) \\
& =\frac{2 \cos \left(\frac{\mathrm{x}+\mathrm{y}}{2}\right) \cdot \sin \left(\frac{\mathrm{x}-\mathrm{y}}{2}\right)}{2 \cos \left(\frac{\mathrm{x}+\mathrm{y}}{2}\right) \cdot \cos \left(\frac{\mathrm{x}-\mathrm{y}}{2}\right)}
\end{aligned}
$$

By further calculation

$$
=\frac{\sin \left(\frac{x-y}{2}\right)}{\cos \left(\frac{x-y}{2}\right)}
$$

So we get
$=\tan \left(\frac{\mathrm{x}-\mathrm{y}}{2}\right)$
= RHS
19.
$\frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}=\tan 2 x$
Solution:
Consider
L.H.S. $=\frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}$

Using the formula
$\sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$
$\cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$
$=\frac{2 \sin \left(\frac{x+3 x}{2}\right) \cos \left(\frac{x-3 x}{2}\right)}{2 \cos \left(\frac{x+3 x}{2}\right) \cos \left(\frac{x-3 x}{2}\right)}$
By further calculation
$=\frac{\sin 2 x}{\cos 2 x}$
So we get
$=\tan 2 \mathrm{x}$
$=$ RHS
20.
$\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}=2 \sin x$

Solution:

Consider
L.H.S. $=\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}$

Using the formula
$\sin \mathrm{A}-\sin \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$
$\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}=\cos 2 \mathrm{~A}$
$=\frac{2 \cos \left(\frac{x+3 x}{2}\right) \sin \left(\frac{x-3 x}{2}\right)}{-\cos 2 x}$
By further calculation
$=\frac{2 \cos 2 \mathrm{x} \sin (-\mathrm{x})}{-\cos 2 \mathrm{x}}$
So we get
$=-2(-\sin \mathrm{x})$
$=2 \sin \mathrm{x}$
= RHS
21.

$$
\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}=\cot 3 x
$$

Solution:

Consider

$$
\text { L.H.S. }=\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}
$$

It can be written as
$=\frac{(\cos 4 x+\cos 2 x)+\cos 3 x}{(\sin 4 x+\sin 2 x)+\sin 3 x}$
Using the formula

$$
\begin{aligned}
& \cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right) \\
& \sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right) \\
& =\frac{2 \cos \left(\frac{4 \mathrm{x}+2 \mathrm{x}}{2}\right) \cos \left(\frac{4 \mathrm{x}-2 \mathrm{x}}{2}\right)+\cos 3 \mathrm{x}}{2 \sin \left(\frac{4 \mathrm{x}+2 \mathrm{x}}{2}\right) \cos \left(\frac{4 \mathrm{x}-2 \mathrm{x}}{2}\right)+\sin 3 \mathrm{x}}
\end{aligned}
$$

By further calculation
$=\frac{2 \cos 3 x \cos x+\cos 3 x}{2 \sin 3 x \cos x+\sin 3 x}$
So we get
$=\frac{\cos 3 x(2 \cos x+1)}{\sin 3 x(2 \cos x+1)}$
$=\cot 3 x$
$=$ RHS
22. $\cot x \cot 2 x-\cot 2 x \cot 3 x-\cot 3 x \cot x=1$

Solution:

Consider

LHS $=\cot x \cot 2 x-\cot 2 x \cot 3 x-\cot 3 x \cot x$
It can be written as
$=\cot x \cot 2 x-\cot 3 x(\cot 2 x+\cot x)$
$=\cot x \cot 2 x-\cot (2 x+x)(\cot 2 x+\cot x)$
Using the formula

$$
\begin{aligned}
& \cot (A+B)=\frac{\cot A \cot B-1}{\cot A+\cot B} \\
& =\cot x \cot 2 x-\left[\frac{\cot 2 x \cot x-1}{\cot x+\cot 2 x}\right](\cot 2 x+\cot x)
\end{aligned}
$$

So we get
$=\cot \mathrm{x} \cot 2 \mathrm{x}-(\cot 2 \mathrm{x} \cot \mathrm{x}-1)$
$=1$
$=$ RHS
23.
$\tan 4 x=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1-6 \tan ^{2} x+\tan ^{4} x}$

Solution:

Consider
LHS $=\tan 4 \mathrm{x}=\tan 2(2 \mathrm{x})$
By using the formula
$\tan 2 \mathrm{~A}=\frac{2 \tan \mathrm{~A}}{1-\tan ^{2} \mathrm{~A}}$
$=\frac{2 \tan 2 \mathrm{x}}{1-\tan ^{2}(2 \mathrm{x})}$
It can be written as
$=\frac{2\left(\frac{2 \tan x}{1-\tan ^{2} x}\right)}{1-\left(\frac{2 \tan x}{1-\tan ^{2} x}\right)^{2}}$
By further simplification

$$
=\frac{\left(\frac{4 \tan x}{1-\tan ^{2} x}\right)}{\left[1-\frac{4 \tan ^{2} x}{\left(1-\tan ^{2} x\right)^{2}}\right]}
$$

Taking LCM

$$
=\frac{\left(\frac{4 \tan x}{1-\tan ^{2} x}\right)}{\left[\frac{\left(1-\tan ^{2} x\right)^{2}-4 \tan ^{2} x}{\left(1-\tan ^{2} x\right)^{2}}\right]}
$$

On further simplification

$$
=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{\left(1-\tan ^{2} x\right)^{2}-4 \tan ^{2} x}
$$

We get
$=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1+\tan ^{4} x-2 \tan ^{2} x-4 \tan ^{2} x}$
It can be written as
$=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1-6 \tan ^{2} x+\tan ^{4} x}$
$=$ RHS
24. $\cos 4 x=1-8 \sin ^{2} x \cos ^{2} x$

Solution:

Consider
LHS $=\cos 4 x$
We can write it as
$=\cos 2(2 x)$
Using the formula $\cos 2 A=1-2 \sin ^{2} A$
$=1-2 \sin ^{2} 2 x$
Again by using the formula $\sin 2 A=2 \sin A \cos A$
$=1-2(2 \sin x \cos x)^{2}$
So we get
$=1-8 \sin ^{2} x \cos ^{2} x$
$=$ R.H.S.
25. $\cos 6 x=32 \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$

Solution:

Consider
L.H.S. $=\cos 6 x$

It can be written as
$=\cos 3(2 x)$
Using the formula $\cos 3 A=4 \cos ^{3} A-3 \cos A$
$=4 \cos ^{3} 2 x-3 \cos 2 x$
Again by using formula $\cos 2 x=2 \cos ^{2} x-1$
$=4\left[\left(2 \cos ^{2} x-1\right)^{3}-3\left(2 \cos ^{2} x-1\right)\right.$
By further simplification
$=4\left[\left(2 \cos ^{2} x\right)^{3}-(1)^{3}-3\left(2 \cos ^{2} x\right)^{2}+3\left(2 \cos ^{2} x\right)\right]-6 \cos ^{2} x+3$
We get
$=4\left[8 \cos ^{6} x-1-12 \cos ^{4} x+6 \cos ^{2} x\right]-6 \cos ^{2} x+3$
By multiplication
$=32 \cos ^{6} x-4-48 \cos ^{4} x+24 \cos ^{2} x-6 \cos ^{2} x+3$
On further calculation
$=32 \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$
$=$ R.H.S.

EXERCISE 3.4

Find the principal and general solutions of the following equations:

1. $\boldsymbol{\operatorname { t a n }} \boldsymbol{x}=\sqrt{ } \mathbf{3}$

Solution:
It is given that
$\tan \mathrm{x}=\sqrt{ } 3$
We know that

$$
\tan \frac{\pi}{3}=\sqrt{3}
$$

It can be written as

$$
\tan \left(\frac{4 \pi}{3}\right)=\tan \left(\pi+\frac{\pi}{3}\right)
$$

So we get
$=\tan \frac{\pi}{3}=\sqrt{3}$
Hence, the principal solutions are $x=\pi / 3$ and $4 \pi / 3$
$\tan \mathrm{x}=\tan \frac{\pi}{3}$
We get
$x=n \pi+\frac{\pi}{3}$, where $n \in Z$
Hence, the general solution is
$x=n \pi+\frac{\pi}{3}$, where $n \in Z$
2. $\sec \mathrm{x}=2$

Solution:

It is given that
$\sec \mathrm{x}=2$
We know that
$\sec \frac{\pi}{3}=2$
It can be written as
$\sec \frac{5 \pi}{3}=\sec \left(2 \pi-\frac{\pi}{3}\right)$
So we get
$=\sec \frac{\pi}{3}=2$
Hence, the principal solutions are $x=\pi / 3$ and $5 \pi / 3$.

$$
\sec x=\sec \frac{\pi}{3}
$$

We know that $\sec x=1 / \cos x$

$$
\cos x=\cos \frac{\pi}{3}
$$

So we get
$\mathrm{x}=2 \mathrm{n} \pi \pm \frac{\pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$
Hence, the general solution is
$x=2 n \pi \pm \frac{\pi}{3}$, where $n \in Z$
3. $\cot x=-\sqrt{3}$

Solution:
It is given that
$\cot x=-\sqrt{3}$
We know that
$\cot \frac{\pi}{6}=\sqrt{3}$
It can be written as
$\cot \left(\pi-\frac{\pi}{6}\right)=-\cot \frac{\pi}{6}=-\sqrt{3}$
And
$\cot \left(2 \pi-\frac{\pi}{6}\right)=-\cot \frac{\pi}{6}=-\sqrt{3}$
So we get
$\cot \frac{5 \pi}{6}=-\sqrt{3}$ and $\cot \frac{11 \pi}{6}=-\sqrt{3}$

Hence, the principal solutions are $x=5 \pi / 6$ and $11 \pi / 6$.
$\cot x=\cot \frac{5 \pi}{6}$
We know that $\cot \mathrm{x}=1 / \tan \mathrm{x}$
$\tan \mathrm{x}=\tan \frac{5 \pi}{6}$
So we get
$x=n \pi+\frac{5 \pi}{6}$, where $n \in Z$
Hence, the general solution is
$\mathrm{x}=\mathrm{n} \pi+\frac{5 \pi}{6}$, where $\mathrm{n} \in \mathrm{Z}$
4. $\operatorname{cosec} \mathrm{x}=-2$

Solution:
It is given that
$\operatorname{cosec} x=-2$
We know that
$\operatorname{cosec} \frac{\pi}{6}=2$
It can be written as
$\operatorname{cosec}\left(\pi+\frac{\pi}{6}\right)=-\operatorname{cosec} \frac{\pi}{6}=-2$
And
$\operatorname{cosec}\left(2 \pi-\frac{\pi}{6}\right)=-\operatorname{cosec} \frac{\pi}{6}=-2$
So we get
$\operatorname{cosec} \frac{7 \pi}{6}=-2$ and $\operatorname{cosec} \frac{11 \pi}{6}=-2$
Hence, the principal solutions are $\mathrm{x}=7 \pi / 6$ and $11 \pi / 6$.
$\operatorname{cosec} x=\operatorname{cosec} \frac{7 \pi}{6}$

We know that $\operatorname{cosec} x=1 / \sin x$

$$
\sin x=\sin \frac{7 \pi}{6}
$$

So we get

$$
x=n \pi+(-1)^{n} \frac{7 \pi}{6}, \text { where } n \in Z
$$

Hence, the general solution is

$$
\mathrm{x}=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{7 \pi}{6}, \text { where } \mathrm{n} \in \mathrm{Z}
$$

Find the general solution for each of the following equations:
5. $\cos 4 x=\cos 2 x$

Solution:
It is given that
$\cos 4 \mathrm{x}=\cos 2 \mathrm{x}$
We can write it as
$\cos 4 \mathrm{x}-\cos 2 \mathrm{x}=0$
Using the formula
$\cos \mathrm{A}-\cos \mathrm{B}=-2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$.
We get
$-2 \sin \left(\frac{4 x+2 x}{2}\right) \sin \left(\frac{4 x-2 x}{2}\right)=0$
By further simplification
$\sin 3 x \sin x=0$
We can write it as
$\sin 3 x=0$ or $\sin x=0$
By equating the values
$3 x=n \pi$ or $x=n \pi$, where $n \in Z$
We get
$x=n \pi / 3$ or $x=n \pi$, where $n \in Z$
6. $\cos 3 x+\cos x-\cos 2 x=0$

Solution:

It is given that
$\cos 3 \mathrm{x}+\cos \mathrm{x}-\cos 2 \mathrm{x}=0$
We can write it as
$2 \cos \left(\frac{3 x+x}{2}\right) \cos \left(\frac{3 x-x}{2}\right)-\cos 2 x=0$
Using the formula
$\cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$.
We get
$2 \cos 2 \mathrm{x} \cos \mathrm{x}-\cos 2 \mathrm{x}=0$
By further simplification
$\cos 2 \mathrm{x}(2 \cos \mathrm{x}-1)=0$
We can write it as
$\cos 2 \mathrm{x}=0$ or $2 \cos \mathrm{x}-1=0$
$\cos 2 x=0$ or $\cos x=1 / 2$
By equating the values
$2 \mathrm{x}=(2 \mathrm{n}+1) \frac{\pi}{2} \quad$ or $\quad \cos \mathrm{x}=\cos \frac{\pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$
We get
$x=(2 n+1) \frac{\pi}{4} \quad$ or $\quad x=2 n \pi \pm \frac{\pi}{3}$, where $n \in Z$
7. $\sin 2 x+\cos x=0$

Solution:

It is given that
$\sin 2 \mathrm{x}+\cos \mathrm{x}=0$
We can write it as
$2 \sin x \cos x+\cos x=0$
$\cos x(2 \sin x+1)=0$
$\cos \mathrm{x}=0$ or $2 \sin \mathrm{x}+1=0$
Let $\cos x=0$
$\cos x=(2 n+1) \frac{\pi}{2}$, where $n \in Z$
$2 \sin x+1=0$
So we get
$\sin x=\frac{-1}{2}=-\sin \frac{\pi}{6}$
We can write it as
$=\sin \left(\pi+\frac{\pi}{6}\right)=\sin \left(\pi+\frac{\pi}{6}\right)$
$=\sin \frac{7 \pi}{6}$
We get
$x=n \pi+(-1)^{n} \frac{7 \pi}{6}$, where $n \in Z$
Hence, the general solution is
$(2 n+1) \frac{\pi}{2}$ or $n \pi+(-1)^{n} \frac{7 \pi}{6}, n \in Z$
8. $\sec ^{2} 2 x=1-\tan 2 x$

Solution:

It is given that
$\sec ^{2} 2 \mathrm{x}=1-\tan 2 \mathrm{x}$
We can write it as
$1+\tan ^{2} 2 \mathrm{x}=1-\tan 2 \mathrm{x}$
$\tan ^{2} 2 \mathrm{x}+\tan 2 \mathrm{x}=0$
Taking common terms
$\tan 2 \mathrm{x}(\tan 2 \mathrm{x}+1)=0$
Here
$\tan 2 \mathrm{x}=0$ or $\tan 2 \mathrm{x}+1=0$
If $\tan 2 x=0$
$\tan 2 \mathrm{x}=\tan 0$
We get
$2 \mathrm{x}=\mathrm{n} \pi+0$, where $\mathrm{n} \in \mathrm{Z}$
$x=n \pi / 2$, where $n \in Z$
$\tan 2 \mathrm{x}+1=0$
We can write it as
$\tan 2 \mathrm{x}=-1$
So we get
$=-\tan \frac{\pi}{4}=\tan \left(\pi-\frac{\pi}{4}\right)$
$=\tan \frac{3 \pi}{4}$
Here
$2 \mathrm{x}=\mathrm{n} \pi+3 \pi / 4$, where $\mathrm{n} \in \mathrm{Z}$
$\mathrm{x}=\mathrm{n} \pi / 2+3 \pi / 8$, where $\mathrm{n} \in \mathrm{Z}$
Hence, the general solution is $n \pi / 2$ or $n \pi / 2+3 \pi / 8, n \in Z$.
9. $\sin x+\sin 3 x+\sin 5 x=0$

Solution:

It is given that
$\sin \mathrm{x}+\sin 3 \mathrm{x}+\sin 5 \mathrm{x}=0$
We can write it as
$(\sin \mathrm{x}+\sin 5 \mathrm{x})+\sin 3 \mathrm{x}=0$
Using the formula
$\sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$
$\left[2 \sin \left(\frac{x+5 x}{2}\right) \cos \left(\frac{x-5 x}{2}\right)\right]+\sin 3 x=0$
By further calculation
$2 \sin 3 x \cos (-2 x)+\sin 3 x=0$
It can be written as
$2 \sin 3 \mathrm{x} \cos 2 \mathrm{x}+\sin 3 \mathrm{x}=0$
By taking out the common terms
$\sin 3 x(2 \cos 2 x+1)=0$
Here
$\sin 3 \mathrm{x}=0$ or $2 \cos 2 \mathrm{x}+1=0$
If $\sin 3 x=0$
$3 x=n \pi$, where $n \in Z$
We get
$x=n \pi / 3$, where $n \in Z$
If $2 \cos 2 x+1=0$
$\cos 2 \mathrm{x}=-1 / 2$
By further simplification
$=-\cos \pi / 3$
$=\cos (\pi-\pi / 3)$
So we get
$\cos 2 x=\cos 2 \pi / 3$
Here
$2 \mathrm{x}=2 \mathrm{n} \pi \pm \frac{2 \pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$

Dividing by 2
$\mathrm{x}=\mathrm{n} \pi \pm \frac{\pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$
Hence, the general solution is

$$
\frac{\mathrm{n} \pi}{3} \text { or } \mathrm{n} \pi \pm \frac{\pi}{3}, \mathrm{n} \in \mathrm{Z}
$$

MISCELLANEOUS EXERCISE

Prove that:
1.
$2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}=0$
Solution:

$$
\text { L.H.S }=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}
$$

Using the formula

$$
\cos x+\cos y=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)
$$

So we get
$=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \left(\frac{\frac{3 \pi}{13}+\frac{5 \pi}{13}}{2}\right) \cos \left(\frac{\frac{3 \pi}{13}-\frac{5 \pi}{13}}{2}\right)$
By further calculation
$=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \frac{4 \pi}{13} \cos \left(\frac{-\pi}{13}\right)$
We get
$=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \frac{4 \pi}{13} \cos \frac{\pi}{13}$
Taking out the common terms
$=2 \cos \frac{\pi}{13}\left[\cos \frac{9 \pi}{13}+\cos \frac{4 \pi}{13}\right]$
It can be written as
$=2 \cos \frac{\pi}{13}\left\lceil 2 \cos \left(\frac{\frac{9 \pi}{13}+\frac{4 \pi}{13}}{2}\right) \cos \left(\frac{\frac{9 \pi}{13}-\frac{4 \pi}{13}}{2}\right)\right]$
On further calculation
$=2 \cos \frac{\pi}{13}\left\lfloor 2 \cos \frac{\pi}{2} \cos \frac{5 \pi}{26}\right\rfloor$
We get
$=2 \cos \frac{\pi}{13} \times 2 \times 0 \times \cos \frac{5 \pi}{26}$
$=0$
$=$ RHS
2. $(\sin 3 x+\sin x) \sin x+(\cos 3 x-\cos x) \cos x=0$

Solution:

Consider
LHS $=(\sin 3 \mathrm{x}+\sin \mathrm{x}) \sin \mathrm{x}+(\cos 3 \mathrm{x}-\cos \mathrm{x}) \cos \mathrm{x}$
By further calculation
$=\sin 3 \mathrm{x} \sin \mathrm{x}+\sin ^{2} \mathrm{x}+\cos 3 \mathrm{x} \cos \mathrm{x}-\cos ^{2} \mathrm{x}$
Taking out the common terms
$=\cos 3 \mathrm{x} \cos \mathrm{x}+\sin 3 \mathrm{x} \sin \mathrm{x}-\left(\cos ^{2} \mathrm{x}-\sin ^{2} \mathrm{x}\right)$
Using the formula
$\cos (\mathrm{A}-\mathrm{B})=\cos \mathrm{A} \cos \mathrm{B}+\sin \mathrm{A} \sin \mathrm{B}$
$=\cos (3 x-x)-\cos 2 x$
So we get
$=\cos 2 \mathrm{x}-\cos 2 \mathrm{x}$
$=0$
$=$ RHS
3.
$(\cos x+\cos y)^{2}+(\sin x-\sin y)^{2}=4 \cos ^{2} \frac{x+y}{2}$

Solution:

Consider
LHS $=(\cos x+\cos y)^{2}+(\sin x-\sin y)^{2}$
By expanding using formula we get
$=\cos ^{2} \mathrm{x}+\cos ^{2} \mathrm{y}+2 \cos \mathrm{x} \cos \mathrm{y}+\sin ^{2} \mathrm{x}+\sin ^{2} \mathrm{y}-2 \sin \mathrm{x} \sin \mathrm{y}$
Grouping the terms
$=\left(\cos ^{2} \mathrm{x}+\sin ^{2} \mathrm{x}\right)+\left(\cos ^{2} \mathrm{y}+\sin ^{2} \mathrm{y}\right)+2(\cos \mathrm{x} \cos \mathrm{y}-\sin \mathrm{x} \sin \mathrm{y})$
Using the formula $\cos (A+B)=(\cos A \cos B-\sin A \sin B)$
$=1+1+2 \cos (\mathrm{x}+\mathrm{y})$
By further calculation
$=2+2 \cos (\mathrm{x}+\mathrm{y})$

Taking 2 as common
$=2[1+\cos (x+y)]$
From the formula $\cos 2 \mathrm{~A}=2 \cos ^{2} \mathrm{~A}-1$
$=2\left[1+2 \cos ^{2}\left(\frac{x+y}{2}\right)-1\right]$
We get
$=4 \cos ^{2}\left(\frac{x+y}{2}\right)$
$=$ RHS
4.
$(\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}=4 \sin ^{2} \frac{x-y}{2}$

Solution:

LHS $=(\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}$
By expanding using formula
$=\cos ^{2} \mathrm{x}+\cos ^{2} \mathrm{y}-2 \cos \mathrm{x} \cos \mathrm{y}+\sin ^{2} \mathrm{x}+\sin ^{2} \mathrm{y}-2 \sin \mathrm{x} \sin \mathrm{y}$
Grouping the terms
$=\left(\cos ^{2} \mathrm{x}+\sin ^{2} \mathrm{x}\right)+\left(\cos ^{2} \mathrm{y}+\sin ^{2} \mathrm{y}\right)-2(\cos \mathrm{x} \cos \mathrm{y}+\sin \mathrm{x} \sin \mathrm{y})$
Using the formula $\cos (A-B)=\cos A \cos B+\sin A \sin B$
$=1+1-2[\cos (\mathrm{x}-\mathrm{y})]$
By further calculation
$=2[1-\cos (x-y)]$
From formula $\cos 2 \mathrm{~A}=1-2 \sin ^{2} \mathrm{~A}$
$=2\left[1-\left\{1-2 \sin ^{2}\left(\frac{x-y}{2}\right)\right\}\right]$
We get
$=4 \sin ^{2}\left(\frac{x-y}{2}\right)$
$=$ RHS
5. $\sin x+\sin 3 x+\sin 5 x+\sin 7 x=4 \cos x \cos 2 x \sin 4 x$

Solution:

Consider
LHS $=\sin x+\sin 3 x+\sin 5 x+\sin 7 x$
Grouping the terms
$=(\sin x+\sin 5 x)+(\sin 3 x+\sin 7 x)$
Using the formula
$\sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cdot \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$
So we get
$=2 \sin \left(\frac{x+5 x}{2}\right) \cdot \cos \left(\frac{x-5 x}{2}\right)+2 \sin \left(\frac{3 x+7 x}{2}\right) \cos \left(\frac{3 x-7 x}{2}\right)$
By further calculation
$=2 \sin 3 x \cos (-2 x)+2 \sin 5 x \cos (-2 x)$
We get
$=2 \sin 3 x \cos 2 x+2 \sin 5 x \cos 2 x$
Taking out the common terms
$=2 \cos 2 x[\sin 3 x+\sin 5 x]$
Using the formula we can write it as
$=2 \cos 2 x\left[2 \sin \left(\frac{3 x+5 x}{2}\right) \cdot \cos \left(\frac{3 x-5 x}{2}\right)\right]$
We get
$=2 \cos 2 x[2 \sin 4 x \cdot \cos (-x)]$
$=4 \cos 2 x \sin 4 x \cos x$
$=$ RHS
6.
$\frac{(\sin 7 x+\sin 5 x)+(\sin 9 x+\sin 3 x)}{(\cos 7 x+\cos 5 x)+(\cos 9 x+\cos 3 x)}=\tan 6 x$
Solution:
L.H.S. $=\frac{(\sin 7 x+\sin 5 x)+(\sin 9 x+\sin 3 x)}{(\cos 7 x+\cos 5 x)+(\cos 9 x+\cos 3 x)}$

Using the formula

$$
\begin{aligned}
& \sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cdot \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right) \cdot \cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cdot \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right) \\
& =\frac{\left[2 \sin \left(\frac{7 \mathrm{x}+5 \mathrm{x}}{2}\right) \cdot \cos \left(\frac{7 \mathrm{x}-5 \mathrm{x}}{2}\right)\right]+\left[2 \sin \left(\frac{9 \mathrm{x}+3 \mathrm{x}}{2}\right) \cdot \cos \left(\frac{9 x-3 \mathrm{x}}{2}\right)\right]}{\left[2 \cos \left(\frac{7 x+5 \mathrm{x}}{2}\right) \cdot \cos \left(\frac{7 x-5 \mathrm{x}}{2}\right)\right]+\left[2 \cos \left(\frac{9 x+3 \mathrm{x}}{2}\right) \cdot \cos \left(\frac{9 x-3 x}{2}\right)\right]}
\end{aligned}
$$

By further calculation
$=\frac{[2 \sin 6 x \cdot \cos x]+[2 \sin 6 x \cdot \cos 3 x]}{[2 \cos 6 x \cdot \cos x]+[2 \cos 6 x \cdot \cos 3 x]}$
Taking out the common terms

$$
=\frac{2 \sin 6 x[\cos x+\cos 3 x]}{2 \cos 6 x[\cos x+\cos 3 x]}
$$

We get
$=\tan 6 \mathrm{x}$
$=$ RHS
7.
$\sin 3 x+\sin 2 x-\sin x=4 \sin x \cos \frac{x}{2} \cos \frac{3 x}{2}$
Solution:

LHS $=\sin 3 x+\sin 2 x-\sin x$
It can be written as
$=\sin 3 x+(\sin 2 x-\sin x)$
Using the formula
$\sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)$
$=\sin 3 x+\left[2 \cos \left(\frac{2 x+x}{2}\right) \sin \left(\frac{2 x-x}{2}\right)\right]$
By further simplification
$=\sin 3 x+\left[2 \cos \left(\frac{3 x}{2}\right) \sin \left(\frac{x}{2}\right)\right]$
$=\sin 3 x+2 \cos \frac{3 x}{2} \sin \frac{x}{2}$
Using formula $\sin 2 \mathrm{~A}=2 \sin \mathrm{~A} \cos \mathrm{~B}$
$=2 \sin \frac{3 x}{2} \cdot \cos \frac{3 x}{2}+2 \cos \frac{3 x}{2} \sin \frac{x}{2}$
Taking out the common terms
$=2 \cos \left(\frac{3 x}{2}\right)\left[\sin \left(\frac{3 x}{2}\right)+\sin \left(\frac{x}{2}\right)\right]$
From the formula

$$
\begin{aligned}
& \sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right) \\
& =2 \cos \left(\frac{3 \mathrm{x}}{2}\right)\left|2 \sin \left\{\frac{\left(\frac{3 \mathrm{x}}{2}\right)+\left(\frac{\mathrm{x}}{2}\right)}{2}\right\} \cos \left\{\frac{\left(\frac{3 \mathrm{x}}{2}\right)-\left(\frac{\mathrm{x}}{2}\right)}{2}\right\}\right|
\end{aligned}
$$

By further simplification
$=2 \cos \left(\frac{3 x}{2}\right) \cdot 2 \sin x \cos \left(\frac{x}{2}\right)$

We get
$=4 \sin x \cos \left(\frac{x}{2}\right) \cos \left(\frac{3 x}{2}\right)$
= RHS
8. Find $\sin x / 2, \cos x / 2$ and $\tan x / 2$ in each of the following:
$\tan x=-\frac{4}{3}, x$ in quadrant II
Solution:
It is given that
x is in quadrant II
$\frac{\pi}{2}<x<\pi$
Dividing by 2
$\frac{\pi}{4}<\frac{x}{2}<\frac{\pi}{2}$
Hence, $\sin x / 2, \cos x / 2$ and $\tan x / 2$ are all positive.
$\tan x=-\frac{4}{3}$
From the formula $\sec ^{2} x=1+\tan ^{2} x$
Substituting the values
$\sec ^{2} x=1+(-4 / 3)^{2}$
We get
$=1+16 / 9=25 / 9$
Here
$\cos ^{2} x=\frac{9}{25}$
$\cos x= \pm \frac{3}{5}$
Here x is in quadrant $\mathrm{II}, \cos \mathrm{x}$ is negative.
$\cos x=-3 / 5$
From the formula
$\cos x=2 \cos ^{2} \frac{x}{2}-1$
Substituting the values
$\frac{-3}{5}=2 \cos ^{2} \frac{x}{2}-1$
By further calculation
$2 \cos ^{2} \frac{x}{2}=1-\frac{3}{5}$
$2 \cos ^{2} \frac{x}{2}=\frac{2}{5}$
$\cos ^{2} \frac{x}{2}=\frac{1}{5}$
We get
$\cos \frac{x}{2}=\frac{1}{\sqrt{5}}$
$\cos \frac{x}{2}=\frac{\sqrt{ } 5}{5}$

From the formula
$\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}=1$
Substituting the value
$\sin ^{2} \frac{x}{2}+\left(\frac{1}{\sqrt{5}}\right)^{2}=1$
By further calculation
$\sin ^{2} \frac{x}{2}=1-\frac{1}{5}=\frac{4}{5}$
We get
$\sin \frac{x}{2}=\frac{2}{\sqrt{5}}$
$\sin \frac{x}{2}=\frac{2 \sqrt{5}}{5}$

Here
$\tan \frac{x}{2}=\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}=\frac{\left(\frac{2}{\sqrt{5}}\right)}{\left(\frac{1}{\sqrt{5}}\right)}=2$
Hence, the respective values of $\sin x / 2, \cos x / 2$ and $\tan x / 2$ are
$\frac{2 \sqrt{5}}{5}, \frac{\sqrt{5}}{5}$, and 2
9. $\cos x=-1 / 3$, x in quadrant III

Solution:
It is given that
x is in quadrant III
$\pi<x<\frac{3 \pi}{2}$
Dividing by 2
$\frac{\pi}{2}<\frac{x}{2}<\frac{3 \pi}{4}$
Hence, $\cos \mathrm{x} / 2$ and $\tan \mathrm{x} / 2$ are negative where $\sin \mathrm{x} / 2$ is positive.
$\cos x=-\frac{1}{3}$
From the formula $\cos x=1-2 \sin ^{2} x / 2$
We get
$\sin ^{2} x / 2=(1-\cos x) / 2$
Substituting the values
$\sin ^{2} \frac{x}{2}=\frac{1-\left(-\frac{1}{3}\right)}{2}=\frac{\left(1+\frac{1}{3}\right)}{2}$
We get
$=\frac{\frac{4}{3}}{2}=\frac{2}{3}$

Here
$\sin \frac{x}{2}=\frac{\sqrt{2}}{\sqrt{3}}$
$\sin \frac{x}{2}=\frac{\sqrt{2}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{6}}{3}$
Using the formula
$\cos x=2 \cos ^{2} \frac{x}{2}-1$
We get
$\cos ^{2} \frac{x}{2}=\frac{1+\cos x}{2}$
Substituting the values
$=\frac{1+\left(-\frac{1}{3}\right)}{2}=\frac{\left(\frac{3-1}{3}\right)}{2}$
$=\frac{\left(\frac{2}{3}\right)}{2}=\frac{1}{3}$
We get
$\cos \frac{x}{2}=-\frac{1}{\sqrt{3}}$
By further calculation
$\cos \frac{x}{2}=-\frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{-\sqrt{3}}{3}$
Here
$\tan \frac{x}{2}=\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}=\frac{\left(\frac{\sqrt{2}}{\sqrt{3}}\right)}{\left(\frac{-1}{\sqrt{3}}\right)}=-\sqrt{2}$
Therefore, the respective values of $\sin x / 2, \cos x / 2$ and $\tan x / 2$ are

$$
\frac{\sqrt{6}}{3}, \frac{-\sqrt{3}}{3}, \text { and }-\sqrt{2}
$$

10. $\sin x=1 / 4$, x in quadrant II

Solution:
It is given that
x is in quadrant II
$\frac{\pi}{2}<\mathrm{x}<\pi$
Dividing by 2
$\frac{\pi}{4}<\frac{x}{2}<\frac{\pi}{2}$
Hence, $\sin \mathrm{x} / 2, \cos \mathrm{x} / 2$ and $\tan \mathrm{x} / 2$ are positive.
$\sin \mathrm{x}=\frac{1}{4}$
From the formula $\cos ^{2} x=1-\sin ^{2} x$
We get
$\cos ^{2} x=1-(1 / 4)^{2}$
Substituting the values
$\cos ^{2} \mathrm{x}=1-1 / 16=15 / 16$
We get
$\cos \mathrm{x}=-\frac{\sqrt{15}}{4}$
Here

$$
\sin ^{2} \frac{x}{2}=\frac{1-\cos x}{2}
$$

Substituting the values
$=\frac{1-\left(-\frac{\sqrt{15}}{4}\right)}{2}=\frac{4+\sqrt{15}}{8}$
We get

$$
\sin \frac{x}{2}=\sqrt{\frac{4+\sqrt{15}}{8}}
$$

Multiplying and dividing by 2
$=\sqrt{\frac{4+\sqrt{15}}{8} \times \frac{2}{2}}$
By further calculation
$=\sqrt{\frac{8+2 \sqrt{15}}{16}}$
$=\frac{\sqrt{8+2 \sqrt{15}}}{4}$
Here
$\cos ^{2} \frac{x}{2}=\frac{1+\cos x}{2}$
By substituting the values
$=\frac{1+\left(-\frac{\sqrt{15}}{4}\right)}{2}=\frac{4-\sqrt{15}}{8}$
We get
$\cos \frac{x}{2}=\sqrt{\frac{4-\sqrt{15}}{8}}$
By multiplying and dividing by 2
$=\sqrt{\frac{4-\sqrt{15}}{8} \times \frac{2}{2}}$
It can be written as
$=\sqrt{\frac{8-2 \sqrt{15}}{16}}$
$=\frac{\sqrt{8-2 \sqrt{15}}}{4}$
We know that
$\tan \frac{x}{2}=\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}$

Substituting the values
$=\frac{\left(\frac{\sqrt{8+2 \sqrt{15}}}{4}\right)}{\left(\frac{\sqrt{8-2 \sqrt{15}}}{4}\right)}=\frac{\sqrt{8+2 \sqrt{15}}}{\sqrt{8-2 \sqrt{15}}}$
By multiplying and dividing the terms
$=\sqrt{\frac{8+2 \sqrt{15}}{8-2 \sqrt{15}}} \times \frac{8+2 \sqrt{15}}{8+2 \sqrt{15}}$
We get
$=\sqrt{\frac{(8+2 \sqrt{15})^{2}}{64-60}}=\frac{8+2 \sqrt{15}}{2}$
$=4+\sqrt{15}$
Therefore, the respective values of $\sin \mathrm{x} / 2, \cos \mathrm{x} / 2$ and $\tan \mathrm{x} / 2$ are
$\frac{\sqrt{8+2 \sqrt{15}}}{4}, \frac{\sqrt{8-2 \sqrt{15}}}{4}$ and $4+\sqrt{15}$

