EXERCISE 4.1

Prove the following by using the principle of mathematical induction for all $n \in N$:
1.
$1+3+3^{2}+\ldots+3^{n-1}=\frac{\left(3^{n}-1\right)}{2}$
Solution:
We can write the given statement as
$P(n): 1+3+3^{2}+\ldots+3^{n-1}=\frac{\left(3^{n}-1\right)}{2}$
If $\mathrm{n}=1$ we get

$$
P(1): 1=\frac{\left(3^{1}-1\right)}{2}=\frac{3-1}{2}=\frac{2}{2}=1
$$

Which is true.
Consider $P(k)$ be true for some positive integer k

$$
\begin{equation*}
1+3+3^{2}+\ldots+3^{k-1}=\frac{\left(3^{k}-1\right)}{2} \tag{i}
\end{equation*}
$$

Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.
Here

$$
1+3+3^{2}+\ldots+3^{k-1}+3^{(k-1)-1}=\left(1+3+3^{2}+\ldots+3^{k-1}\right)+3^{k}
$$

By using equation (i)

$$
=\frac{\left(3^{k}-1\right)}{2}+3^{k}
$$

Taking LCM
$=\frac{\left(3^{k}-1\right)+2.3^{k}}{2}$

Taking the common terms out
$=\frac{(1+2) 3^{k}-1}{2}$
We get
$=\frac{3.3^{k}-1}{2}$
$=\frac{3^{k+1}-1}{2}$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Therefore, by the principle of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, i.e., n .
2.

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

Solution:

We can write the given statement as
$\mathrm{P}(n): 1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
If $\mathrm{n}=1$ we get
$P(1): 1^{3}=1=\left(\frac{1(1+1)}{2}\right)^{2}=\left(\frac{1.2}{2}\right)^{2}=1^{2}=1$
Which is true.
Consider $P(k)$ be true for some positive integer k

$$
\begin{equation*}
1^{3}+2^{3}+3^{3}+\ldots .+k^{3}=\left(\frac{k(k+1)}{2}\right)^{2} \tag{i}
\end{equation*}
$$

Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.
Here
$1^{3}+2^{3}+3^{3}+\ldots+k^{3}+(k+1)^{3}=\left(1^{3}+2^{3}+3^{3}+\ldots \ldots . .+\mathrm{k}^{3}\right)+(\mathrm{k}+1)^{3}$
By using equation (i)
$=\left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3}$
So we get
$=\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3}$
Taking LCM
$=\frac{k^{2}(k+1)^{2}+4(k+1)^{3}}{4}$

Taking the common terms out
$=\frac{(k+1)^{2}\left\{k^{2}+4(k+1)\right\}}{4}$
We get
$=\frac{(k+1)^{2}\left\{k^{2}+4 k+4\right\}}{4}$
$=\frac{(k+1)^{2}(k+2)^{2}}{4}$
By expanding using formula
$=\frac{(k+1)^{2}(k+1+1)^{2}}{4}$
$=\left(\frac{(k+1)(k+1+1)}{2}\right)^{2}$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Therefore, by the principle of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, i.e., n .
3.
$1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\ldots+\frac{1}{(1+2+3+\ldots n)}=\frac{2 n}{(n+1)}$
Solution:

We can write the given statement as
$\mathrm{P}(n): 1+\frac{1}{1+2}+\frac{1}{1+2+3}+\ldots+\frac{1}{1+2+3+\ldots n}=\frac{2 n}{n+1}$
If $\mathrm{n}=1$ we get
$P(1): 1=\frac{2.1}{1+1}=\frac{2}{2}=1$
Which is true.
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k

$$
\begin{equation*}
1+\frac{1}{1+2}+\ldots+\frac{1}{1+2+3}+\ldots+\frac{1}{1+2+3+\ldots+k}=\frac{2 k}{k+1} \tag{i}
\end{equation*}
$$

Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.

Here

$$
\begin{aligned}
& 1+\frac{1}{1+2}+\frac{1}{1+2+3}+\ldots+\frac{1}{1+2+3+\ldots+k}+\frac{1}{1+2+3+\ldots+k+(k+1)} \\
& =\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+\ldots+\frac{1}{1+2+3+\ldots k}\right)+\frac{1}{1+2+3+\ldots+k+(k+1)}
\end{aligned}
$$

By using equation (i)
$=\frac{2 k}{k+1}+\frac{1}{1+2+3+\ldots+k+(k+1)}$
We know that

$$
1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

So we get
$=\frac{2 k}{k+1}+\frac{1}{\left(\frac{(k+1)(k+1+1)}{2}\right)}$
It can be written as
$=\frac{2 k}{(k+1)}+\frac{2}{(k+1)(k+2)}$
Taking the common terms out
$=\frac{2}{(k+1)}\left(k+\frac{1}{k+2}\right)$
By taking LCM
$=\frac{2}{k+1}\left(\frac{k(k+2)+1}{k+2}\right)$
We get

$$
\begin{aligned}
& =\frac{2}{(k+1)}\left(\frac{k^{2}+2 k+1}{k+2}\right) \\
& =\frac{2 \cdot(k+1)^{2}}{(k+1)(k+2)} \\
& =\frac{2(k+1)}{(k+2)}
\end{aligned}
$$

$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Therefore, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers, i.e., n.
4.
$1.2 .3+2.3 .4+\ldots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$

Solution:

We can write the given statement as
$\mathrm{P}(n): 1.2 .3+2.3 .4+\ldots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$
If $\mathrm{n}=1$ we get
$P(1): 1.2 .3=6=\frac{1(1+1)(1+2)(1+3)}{4}=\frac{1.2 \cdot 3 \cdot 4}{4}=6$
Which is true.
Consider $P(k)$ be true for some positive integer k
$1.2 .3+2.3 .4+\ldots+k(k+1)(k+2)=\frac{k(k+1)(k+2)(k+3)}{4}$
Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.
Here
$1.2 .3+2.3 .4+\ldots+k(k+1)(k+2)+(k+1)(k+2)(k+3)=\{1.2 .3+2.3 .4+\ldots+k(k+1)(k+$ 2) $\}+(k+1)(k+2)(k+3)$

By using equation (i)
$=\frac{k(k+1)(k+2)(k+3)}{4}+(k+1)(k+2)(k+3)$
So we get

$$
=(k+1)(k+2)(k+3)\left(\frac{k}{4}+1\right)
$$

It can be written as
$=\frac{(k+1)(k+2)(k+3)(k+4)}{4}$
By further simplification
$=\frac{(k+1)(k+1+1)(k+1+2)(k+1+3)}{4}$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Therefore, by the principle of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, i.e., n .
5.
$1.3+2.3^{2}+3.3^{3}+\ldots+n .3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}$

Solution:

We can write the given statement as
$\mathrm{P}(n): 1.3+2.3^{2}+3.3^{3}+\ldots+n 3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}$
If $\mathrm{n}=1$ we get
$P(1): 1.3=3=\frac{(2.1-1) 3^{1+1}+3}{4}=\frac{3^{2}+3}{4}=\frac{12}{4}=3$
Which is true.
Consider $P(k)$ be true for some positive integer k

$$
\begin{equation*}
1.3+2.3^{2}+3.3^{3}+\ldots+k 3^{k}=\frac{(2 k-1) 3^{k+1}+3}{4} \tag{i}
\end{equation*}
$$

Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.
Here
$1.3+2.3^{2}+3.3^{3}+\ldots+k 3^{k}+(k+1) 3^{k+1}==\left(1.3+2.3^{2}+3.3^{3}+\ldots+k .3^{k}\right)+(k+1) 3^{k+1}$
By using equation (i)
$=\frac{(2 k-1) 3^{k+1}+3}{4}+(k+1) 3^{k+1}$
By taking LCM
$=\frac{(2 k-1) 3^{k+1}+3+4(k+1) 3^{k+1}}{4}$
Taking the common terms out

$$
=\frac{3^{k+1}\{2 k-1+4(k+1)\}+3}{4}
$$

By further simplification
$=\frac{3^{k+1}\{6 k+3\}+3}{4}$

Taking 3 as common
$=\frac{3^{k+1} \cdot 3\{2 k+1\}+3}{4}$
$=\frac{3^{(k+1)+1}\{2 k+1\}+3}{4}$
$=\frac{\{2(k+1)-1\} 3^{(k+1)+1}+3}{4}$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Therefore, by the principle of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, i.e., n .
6.
$1.2+2.3+3.4+\ldots+n \cdot(n+1)=\left[\frac{n(n+1)(n+2)}{3}\right]$
Solution:

We can write the given statement as
$\mathrm{P}(n): 1.2+2.3+3.4+\ldots+n .(n+1)=\left[\frac{n(n+1)(n+2)}{3}\right]$
If $\mathrm{n}=1$ we get
$P(1): 1.2=2=\frac{1(1+1)(1+2)}{3}=\frac{1.2 .3}{3}=2$
Which is true.
Consider $P(k)$ be true for some positive integer k

$$
\begin{equation*}
1.2+2.3+3.4+\ldots . .+k \cdot(k+1)=\left[\frac{k(k+1)(k+2)}{3}\right] \tag{i}
\end{equation*}
$$

Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.

Here

$1.2+2.3+3.4+\ldots+k .(k+1)+(k+1) .(k+2)=[1.2+2.3+3.4+\ldots+k .(k+1)]+(k+1) .(k+2)$
By using equation (i)

$$
=\frac{k(k+1)(k+2)}{3}+(k+1)(k+2)
$$

We can write it as
$=(k+1)(k+2)\left(\frac{k}{3}+1\right)$
We get
$=\frac{(k+1)(k+2)(k+3)}{3}$
By further simplification
$=\frac{(k+1)(k+1+1)(k+1+2)}{3}$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Therefore, by the principle of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, i.e., n .
7.
$1.3+3.5+5.7+\ldots+(2 n-1)(2 n+1)=\frac{n\left(4 n^{2}+6 n-1\right)}{3}$

Solution:

We can write the given statement as
$P(n): 1.3+3.5+5.7+\ldots+(2 n-1)(2 n+1)=\frac{n\left(4 n^{2}+6 n-1\right)}{3}$
If $\mathrm{n}=1$ we get
$P(1): 1.3=3=\frac{1\left(4.1^{2}+6.1-1\right)}{3}=\frac{4+6-1}{3}=\frac{9}{3}=3$
Which is true.
Consider $P(k)$ be true for some positive integer k

$$
\begin{equation*}
1.3+3.5+5.7+\ldots \ldots+(2 k-1)(2 k+1)=\frac{k\left(4 k^{2}+6 k-1\right)}{3} \tag{i}
\end{equation*}
$$

Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.
Here

$$
(1.3+3.5+5.7+\ldots+(2 k-1)(2 k+1)+\{2(k+1)-1\}\{2(k+1)+1\}
$$

By using equation (i)
$=\frac{k\left(4 k^{2}+6 k-1\right)}{3}+(2 k+2-1)(2 k+2+1)$
$=\frac{k\left(4 k^{2}+6 k-1\right)}{3}+(2 k+2-1)(2 k+2+1)$
On further calculation
$=\frac{k\left(4 k^{2}+6 k-1\right)}{3}+(2 k+1)(2 k+3)$
By multiplying the terms
$=\frac{k\left(4 k^{2}+6 k-1\right)}{3}+\left(4 k^{2}+8 k+3\right)$
Taking LCM
$=\frac{k\left(4 k^{2}+6 k-1\right)+3\left(4 k^{2}+8 k+3\right)}{3}$
By further simplification
$=\frac{4 k^{3}+6 k^{2}-k+12 k^{2}+24 k+9}{3}$
So we get
$=\frac{4 k^{3}+18 k^{2}+23 k+9}{3}$
It can be written as

$$
\begin{aligned}
& =\frac{4 k^{3}+14 k^{2}+9 k+4 k^{2}+14 k+9}{3} \\
& =\frac{k\left(4 k^{2}+14 k+9\right)+1\left(4 k^{2}+14 k+9\right)}{3}
\end{aligned}
$$

Separating the terms
$=\frac{(k+1)\left\{4 k^{2}+8 k+4+6 k+6-1\right\}}{3}$
Taking the common terms out
$=\frac{(k+1)\left\{4\left(k^{2}+2 k+1\right)+6(k+1)-1\right\}}{3}$
Using the formula
$=\frac{(k+1)\left\{4(k+1)^{2}+6(k+1)-1\right\}}{3}$
$P(k+1)$ is true whenever $P(k)$ is true.
Therefore, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers, i.e., n.
8. $1.2+2.2^{2}+3.2^{2}+\ldots+n .2^{n}=(n-1) 2^{n+1}+2$

Solution:

We can write the given statement as
$\mathrm{P}(n): 1.2+2.2^{2}+3.2^{2}+\ldots+n .2^{n}=(n-1) 2^{n+1}+2$
If $\mathrm{n}=1$ we get
$P(1): 1.2=2=(1-1) 2^{1+1}+2=0+2=2$
Which is true.
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
$1.2+2.2^{2}+3.2^{2}+\ldots+k .2^{k}=(k-1) 2^{k+1}+2$.
Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.
Here
$\left\{1.2+2.2^{2}+3.2^{3}+\ldots+k .2^{k}\right\}+(k+1) \cdot 2^{k+1}$
By using equation (i)
$=(k-1) 2^{k+1}+2+(k+1) 2^{k+1}$
Taking the common terms out
$=2^{k+1}\{(k-1)+(k+1)\}+2$
So we get
$=2^{k+1} \cdot 2 k+2$
It can be written as
$=k \cdot 2^{(k+1)+1}+2$
$=\{(k+1)-1\} 2^{(k+1)+1}+2$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.

Therefore, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers, i.e., n.
9.
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}$

Solution:

We can write the given statement as
$\mathrm{P}(n): \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}$
If $\mathrm{n}=1$ we get
$P(1): \frac{1}{2}=1-\frac{1}{2^{\prime}}=\frac{1}{2}$
Which is true.
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots .+\frac{1}{2^{k}}=1-\frac{1}{2^{k}}$
Now let us prove that $P(k+1)$ is true.
Here
$\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \ldots .+\frac{1}{2^{k}}\right)+\frac{1}{2^{k+1}}$
By using equation (i)
$=\left(1-\frac{1}{2^{k}}\right)+\frac{1}{2^{k+1}}$
We can write it as
$=1-\frac{1}{2^{k}}+\frac{1}{2.2^{k}}$
Taking the common terms out
$=1-\frac{1}{2^{k}}\left(1-\frac{1}{2}\right)$
So we get
$=1-\frac{1}{2^{k}}\left(\frac{1}{2}\right)$
It can be written as
$=1-\frac{1}{2^{k+1}}$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Therefore, by the principle of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, i.e., n .
10.
$\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{(6 n+4)}$

Solution:

We can write the given statement as

$$
\mathrm{P}(n): \frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{(6 n+4)}
$$

If $\mathrm{n}=1$ we get

$$
\mathrm{P}(1)=\frac{1}{2.5}=\frac{1}{10}=\frac{1}{6.1+4}=\frac{1}{10}
$$

Which is true.
Consider $P(k)$ be true for some positive integer k
$\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots+\frac{1}{(3 k-1)(3 k+2)}=\frac{k}{6 k+4}$
Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.
Here

$$
\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots \ldots .+\frac{1}{(3 k-1)(3 k+2)}+\frac{1}{\{3(k+1)-1\}\{3(k+1)+2\}}
$$

By using equation (i)

$$
=\frac{k}{6 k+4}+\frac{1}{(3 k+3-1)(3 k+3+2)}
$$

By simplification of terms
$=\frac{k}{6 k+4}+\frac{1}{(3 k+2)(3 k+5)}$
Taking 2 as common

$$
=\frac{k}{2(3 k+2)}+\frac{1}{(3 k+2)(3 k+5)}
$$

Taking the common terms out

$$
=\frac{1}{(3 k+2)}\left(\frac{k}{2}+\frac{1}{3 k+5}\right)
$$

Taking LCM
$=\frac{1}{(3 k+2)}\left(\frac{k(3 k+5)+2}{2(3 k+5)}\right)$
By multiplication
$=\frac{1}{(3 k+2)}\left(\frac{3 k^{2}+5 k+2}{2(3 k+5)}\right)$
Separating the terms
$=\frac{1}{(3 k+2)}\left(\frac{(3 k+2)(k+1)}{2(3 k+5)}\right)$
By further calculation

$$
=\frac{(k+1)}{6 k+10}
$$

So we get
$=\frac{(k+1)}{6(k+1)+4}$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Therefore, by the principle of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, i.e., n .
11.
$\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}$
Solution:

We can write the given statement as

$$
\mathrm{P}(n)=\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}
$$

If $\mathrm{n}=1$ we get
$P(1): \frac{1}{1 \cdot 2 \cdot 3}=\frac{1 \cdot(1+3)}{4(1+1)(1+2)}=\frac{1 \cdot 4}{4 \cdot 2 \cdot 3}=\frac{1}{1 \cdot 2 \cdot 3}$
Which is true.
Consider $P(k)$ be true for some positive integer k

$$
\begin{equation*}
\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\frac{1}{3 \cdot 4 \cdot 5}+\ldots+\frac{1}{k(k+1)(k+2)}=\frac{k(k+3)}{4(k+1)(k+2)} \tag{i}
\end{equation*}
$$

Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.
Here
$\left[\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\frac{1}{3 \cdot 4 \cdot 5}+\ldots . .+\frac{1}{k(k+1)(k+2)}\right]+\frac{1}{(k+1)(k+2)(k+3)}$
By using equation (i)
$=\frac{k(k+3)}{4(k+1)(k+2)}+\frac{1}{(k+1)(k+2)(k+3)}$
Taking out the common terms

$$
=\frac{1}{(k+1)(k+2)}\left\{\frac{k(k+3)}{4}+\frac{1}{k+3}\right\}
$$

Taking LCM

$=\frac{1}{(k+1)(k+2)}\left\{\frac{k(k+3)^{2}+4}{4(k+3)}\right\}$
Expanding using formula

$$
=\frac{1}{(k+1)(k+2)}\left\{\frac{k\left(k^{2}+6 k+9\right)+4}{4(k+3)}\right\}
$$

By further calculation

$$
=\frac{1}{(k+1)(k+2)}\left\{\frac{k^{3}+6 k^{2}+9 k+4}{4(k+3)}\right\}
$$

We can write it as
$=\frac{1}{(k+1)(k+2)}\left\{\frac{k^{3}+2 k^{2}+k+4 k^{2}+8 k+4}{4(k+3)}\right\}$
Taking the common terms
$=\frac{1}{(k+1)(k+2)}\left\{\frac{k\left(k^{2}+2 k+1\right)+4\left(k^{2}+2 k+1\right)}{4(k+3)}\right\}$
We get
$=\frac{1}{(k+1)(k+2)}\left\{\frac{k(k+1)^{2}+4(k+1)^{2}}{4(k+3)}\right\}$
Here
$=\frac{(k+1)^{2}(k+4)}{4(k+1)(k+2)(k+3)}$
$=\frac{(k+1)\{(k+1)+3\}}{4\{(k+1)+1\}\{(k+1)+2\}}$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Therefore, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers, i.e., n.
12.
$a+a r+a r^{2}+\ldots+a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}$
Solution:

We can write the given statement as
$\mathrm{P}(n): a+a r+a r^{2}+\ldots+a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}$
If $\mathrm{n}=1$ we get
$\mathrm{P}(1): a=\frac{a\left(r^{\prime}-1\right)}{(r-1)}=a$
Which is true.
Consider $P(k)$ be true for some positive integer k
$a+a r+a r^{2}+\ldots \ldots .+a r^{k-1}=\frac{a\left(r^{n}-1\right)}{r-1}$
Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.
Here
$\left\{a+a r+a r^{2}+\ldots \ldots+a r^{k-1}\right\}+a r^{(k+1)-1}$
By using equation (i)
$=\frac{a\left(r^{k}-1\right)}{r-1}+a r^{k}$
Taking LCM
$=\frac{a\left(r^{k}-1\right)+a r^{k}(r-1)}{r-1}$

Multiplying the terms
$=\frac{a\left(r^{k}-1\right)+a r^{k+1}-a r^{k}}{r-1}$
So we get
$=\frac{a r^{k}-a+a r^{k+1}-a r^{k}}{r-1}$
By further simplification
$=\frac{a r^{k+1}-a}{r-1}$
Taking the common terms out
$=\frac{a\left(r^{k+1}-1\right)}{r-1}$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Therefore, by the principle of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, i.e., n .
13.
$\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left(1+\frac{(2 n+1)}{n^{2}}\right)=(n+1)^{2}$
Solution:

We can write the given statement as
$\mathrm{P}(n):\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left(1+\frac{(2 n+1)}{n^{2}}\right)=(n+1)^{2}$
If $\mathrm{n}=1$ we get
$P(1):\left(1+\frac{3}{1}\right)=4=(1+1)^{2}=2^{2}=4$,
Which is true.
Consider $P(k)$ be true for some positive integer k
$\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left(1+\frac{(2 k+1)}{k^{2}}\right)=(k+1)^{2}$
Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.
Here
$\left[\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left(1+\frac{(2 k+1)}{k^{2}}\right)\right]\left\{1+\frac{\{2(k+1)+1\}}{(k+1)^{2}}\right\}$
By using equation (i)
$=(k+1)^{2}\left(1+\frac{2(k+1)+1}{(k+1)^{2}}\right)$
Taking LCM
$=(k+1)^{2}\left[\frac{(k+1)^{2}+2(k+1)+1}{(k+1)^{2}}\right]$
So we get
$=(k+1)^{2}+2(k+1)+1$
By further simplification
$=\{(k+1)+1\}^{2}$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Therefore, by the principle of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, i.e., n .
14.
$\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \cdots\left(1+\frac{1}{n}\right)=(n+1)$

Solution:

We can write the given statement as
$\mathrm{P}(n):\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{n}\right)=(n+1)$
If $\mathrm{n}=1$ we get
$P(1):\left(1+\frac{1}{1}\right)=2=(1+1)$
Which is true.
Consider $P(k)$ be true for some positive integer k
$\mathrm{P}(k):\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{k}\right)=(k+1)$
Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.
Here
$\left[\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{k}\right)\right]\left(1+\frac{1}{k+1}\right)$
By using equation (i)
$=(k+1)\left(1+\frac{1}{k+1}\right)$
Taking LCM
$=(k+1)\left(\frac{(k+1)+1}{(k+1)}\right)$
By further simplification
$=(\mathrm{k}+1)+1$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Therefore, by the principle of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, i.e., n .
15.
$1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$
Solution:
We can write the given statement as
$\mathrm{P}(n)=1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$
If $\mathrm{n}=1$ we get
$P(1)=1^{2}=1=\frac{1(2.1-1)(2.1+1)}{3}=\frac{1.1 .3}{3}=1$.
Which is true.
Consider $P(k)$ be true for some positive integer k
$\mathrm{P}(k)=1^{2}+3^{2}+5^{2}+\ldots+(2 k-1)^{2}=\frac{k(2 k-1)(2 k+1)}{3}$
Now let us prove that $P(k+1)$ is true.
Here

$$
\left\{1^{2}+3^{2}+5^{2}+\ldots+(2 k-1)^{2}\right\}+\{2(k+1)-1\}^{2}
$$

By using equation (i)
$=\frac{k(2 k-1)(2 k+1)}{3}+(2 k+2-1)^{2}$
So we get
$=\frac{k(2 k-1)(2 k+1)}{3}+(2 k+1)^{2}$
Taking LCM
$=\frac{k(2 k-1)(2 k+1)+3(2 k+1)^{2}}{3}$
Taking the common terms out
$=\frac{(2 k+1)\{k(2 k-1)+3(2 k+1)\}}{3}$
By further simplification
$=\frac{(2 k+1)\left\{2 k^{2}-k+6 k+3\right\}}{3}$
So we get
$=\frac{(2 k+1)\left\{2 k^{2}+5 k+3\right\}}{3}$
We can write it as
$=\frac{(2 k+1)\left\{2 k^{2}+2 k+3 k+3\right\}}{3}$
Splitting the terms
$=\frac{(2 k+1)\{2 k(k+1)+3(k+1)\}}{3}$
We get
$=\frac{(2 k+1)(k+1)(2 k+3)}{3}$
$=\frac{(k+1)\{2(k+1)-1\}\{2(k+1)+1\}}{3}$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.

Therefore, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers, i.e., n.
16.
$\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{(3 n+1)}$
Solution:
We can write the given statement as

$$
\mathrm{P}(n): \frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{(3 n+1)}
$$

If $\mathrm{n}=1$ we get

$$
\mathrm{P}(1)=\frac{1}{1.4}=\frac{1}{3.1+1}=\frac{1}{4}=\frac{1}{1.4}
$$

Which is true.
Consider $P(k)$ be true for some positive integer k

$$
\begin{equation*}
\mathrm{P}(k)=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\frac{1}{(3 k-2)(3 k+1)}=\frac{k}{3 k+1} \tag{1}
\end{equation*}
$$

Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.

Here

$$
\left\{\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\frac{1}{(3 k-2)(3 k+1)}\right\}+\frac{1}{\{3(k+1)-2\}\{3(k+1)+1\}}
$$

By using equation (i)
$=\frac{k}{3 k+1}+\frac{1}{(3 k+1)(3 k+4)}$
So we get
$=\frac{1}{(3 k+1)}\left\{k+\frac{1}{(3 k+4)}\right\}$

Taking LCM
$=\frac{1}{(3 k+1)}\left\{\frac{k(3 k+4)+1}{(3 k+4)}\right\}$
Multiplying the terms
$=\frac{1}{(3 k+1)}\left\{\frac{3 k^{2}+4 k+1}{(3 k+4)}\right\}$
It can be written as
$=\frac{1}{(3 k+1)}\left\{\frac{3 k^{2}+3 k+k+1}{(3 k+4)}\right\}$
Separating the terms
$=\frac{(3 k+1)(k+1)}{(3 k+1)(3 k+4)}$
By further calculation
$=\frac{(k+1)}{3(k+1)+1}$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Therefore, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e. n.
17.
$\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)}$
Solution:

We can write the given statement as
$\mathrm{P}(n): \frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)}$
If $\mathrm{n}=1$ we get
$\mathrm{P}(1): \frac{1}{3.5}=\frac{1}{3(2.1+3)}=\frac{1}{3.5}$
Which is true.
Consider $P(k)$ be true for some positive integer k
$\mathrm{P}(k): \frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 k+1)(2 k+3)}=\frac{k}{3(2 k+3)}$
Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.
Here

$$
\left[\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 k+1)(2 k+3)}\right]+\frac{1}{\{2(k+1)+1\}\{2(k+1)+3\}}
$$

By using equation (i)
$=\frac{k}{3(2 k+3)}+\frac{1}{(2 k+3)(2 k+5)}$
So we get
$=\frac{1}{(2 k+3)}\left[\frac{k}{3}+\frac{1}{(2 k+5)}\right]$
Taking LCM
$=\frac{1}{(2 k+3)}\left[\frac{k(2 k+5)+3}{3(2 k+5)}\right]$
Multiplying the terms
$=\frac{1}{(2 k+3)}\left[\frac{2 k^{2}+5 k+3}{3(2 k+5)}\right]$
It can be written as
$=\frac{1}{(2 k+3)}\left[\frac{2 k^{2}+2 k+3 k+3}{3(2 k+5)}\right]$
Separating the terms
$=\frac{1}{(2 k+3)}\left[\frac{2 k(k+1)+3(k+1)}{3(2 k+5)}\right]$
By further calculation
$=\frac{(k+1)(2 k+3)}{3(2 k+3)(2 k+5)}$
$=\frac{(k+1)}{3\{2(k+1)+3\}}$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Therefore, by the principle of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, i.e., n .
18.
$1+2+3+\ldots+n<\frac{1}{8}(2 n+1)^{2}$
Solution:

We can write the given statement as
$\mathrm{P}(n): 1+2+3+\ldots+n<\frac{1}{8}(2 n+1)^{2}$
If $\mathrm{n}=1$ we get

$$
1<\frac{1}{8}(2.1+1)^{2}=\frac{9}{8}
$$

Which is true.
Consider $P(k)$ be true for some positive integer k

$$
\begin{equation*}
1+2+\ldots+k<\frac{1}{8}(2 k+1)^{2} \tag{1}
\end{equation*}
$$

Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.
Here
$(1+2+\ldots+k)+(k+1)<\frac{1}{8}(2 k+1)^{2}+(k+1)$
By using equation (i)
$<\frac{1}{8}\left\{(2 k+1)^{2}+8(k+1)\right\}$
Expanding terms using formula
$<\frac{1}{8}\left\{4 k^{2}+4 k+1+8 k+8\right\}$
By further calculation
$<\frac{1}{8}\left\{4 k^{2}+12 k+9\right\}$
So we get
$<\frac{1}{8}(2 k+3)^{2}$
$<\frac{1}{8}\{2(k+1)+1\}^{2}$
$(1+2+3+\ldots+k)+(k+1)<\frac{1}{8}(2 k+1)^{2}+(k+1)$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Therefore, by the principle of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, i.e., n .
19. $n(n+1)(n+5)$ is a multiple of 3

Solution:

We can write the given statement as
$\mathrm{P}(\mathrm{n}): \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+5)$, which is a multiple of 3
If $\mathrm{n}=1$ we get
$1(1+1)(1+5)=12$, which is a multiple of 3
Which is true.
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
$\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+5)$ is a multiple of 3
$\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+5)=3 \mathrm{~m}$, where $\mathrm{m} \in \mathrm{N}$
Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.
Here
$(\mathrm{k}+1)\{(\mathrm{k}+1)+1\}\{(\mathrm{k}+1)+5\}$
We can write it as
$=(\mathrm{k}+1)(\mathrm{k}+2)\{(\mathrm{k}+5)+1\}$
By multiplying the terms
$=(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+5)+(\mathrm{k}+1)(\mathrm{k}+2)$
So we get
$=\{\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+5)+2(\mathrm{k}+1)(\mathrm{k}+5)\}+(\mathrm{k}+1)(\mathrm{k}+2)$
Substituting equation (1)
$=3 \mathrm{~m}+(\mathrm{k}+1)\{2(\mathrm{k}+5)+(\mathrm{k}+2)\}$
By multiplication
$=3 \mathrm{~m}+(\mathrm{k}+1)\{2 \mathrm{k}+10+\mathrm{k}+2\}$
On further calculation
$=3 \mathrm{~m}+(\mathrm{k}+1)(3 \mathrm{k}+12)$
Taking 3 as common
$=3 \mathrm{~m}+3(\mathrm{k}+1)(\mathrm{k}+4)$

We get
$=3\{\mathrm{~m}+(\mathrm{k}+1)(\mathrm{k}+4)\}$
$=3 \times \mathrm{q}$ where $\mathrm{q}=\{\mathrm{m}+(\mathrm{k}+1)(\mathrm{k}+4)\}$ is some natural number
$(\mathrm{k}+1)\{(\mathrm{k}+1)+1\}\{(\mathrm{k}+1)+5\}$ is a multiple of 3
$P(k+1)$ is true whenever $P(k)$ is true.
Therefore, by the principle of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, i.e., n .
20. $10^{2 n-1}+1$ is divisible by 11

Solution:

We can write the given statement as
$\mathrm{P}(n): 10^{2 n-1}+1$ is divisible by 11
If $\mathrm{n}=1$ we get
$P(1)=10^{21-1}+1=11$, which is divisible by 11
Which is true.
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
$10^{2 k-1}+1$ is divisible by 11
$10^{2 k-1}+1=11 \mathrm{~m}$, where $m \in \mathrm{~N}$
Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.
Here
$10^{2(k+1)-1}+1$
We can write it as
$=10^{2 k+2-1}+1$
$=10^{2 k+1}+1$
By addition and subtraction of 1
$=10^{2}\left(10^{2 k-1}+1-1\right)+1$
We get
$=10^{2}\left(10^{2 k-1}+1\right)-10^{2}+1$
Using equation 1 we get
$=10^{2} .11 \mathrm{~m}-100+1$
$=100 \times 11 \mathrm{~m}-99$
Taking out the common terms
$=11(100 m-9)$
$=11 \mathrm{r}$, where $\mathrm{r}=(100 \mathrm{~m}-9)$ is some natural number
$10^{2(k+1)-1}+1$ is divisible by 11
$P(k+1)$ is true whenever $P(k)$ is true.
Therefore, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers, i.e., n.
21. $x^{2 n}-y^{2 n}$ is divisible by $x+y$

Solution:

We can write the given statement as
$\mathrm{P}(n): x^{2 n}-y^{2 n}$ is divisible by $x+y$
If $\mathrm{n}=1$ we get
$\mathrm{P}(1)=x^{2 \times 1}-y^{2 \times 1}=x^{2}-y^{2}=(x+y)(x-y)$, which is divisible by $(x+y)$
Which is true.
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
$x^{2 k}-y^{2 k}$ is divisible by $x+y$
$x^{2 k}-y^{2 k}=m(x+y)$, where $m \in \mathrm{~N}$
Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.
Here
$x^{2(k+1)}-y^{2(k+1)}$
We can write it as
$=x^{2 k} \cdot \mathrm{X}^{2}-\mathrm{y}^{2 \mathrm{k}} \cdot \mathrm{y}^{2}$
By adding and subtracting $y^{2 k}$ we get
$=\mathrm{X}^{2}\left(\mathrm{x}^{2 \mathrm{k}}-\mathrm{y}^{2 \mathrm{k}}+\mathrm{y}^{2 \mathrm{k}}\right)-\mathrm{y}^{2 \mathrm{k}} . \mathrm{y}^{2}$
From equation (1) we get
$=x^{2}\left\{m(x+y)+y^{2 k}\right\}-y^{2 k} . y^{2}$

By multiplying the terms
$=m(x+y) x^{2}+y^{2 k} \cdot x^{2}-y^{2 k} \cdot y^{2}$
Taking out the common terms
$=m(x+y) x^{2}+y^{2 k}\left(x^{2}-y^{2}\right)$
Expanding using formula
$=m(x+y) x^{2}+y^{2 k}(x+y)(x-y)$
So we get
$=(\mathrm{x}+\mathrm{y})\left\{\mathrm{mx}^{2}+\mathrm{y}^{2 k}(\mathrm{x}-\mathrm{y})\right\}$, which is a factor of $(\mathrm{x}+\mathrm{y})$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Therefore, by the principle of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, i.e., n .
22. $3^{2 n+2}-8 n-9$ is divisible by 8

Solution:

We can write the given statement as
P (n): $3^{2 n+2}-8 n-9$ is divisible by 8
If $\mathrm{n}=1$ we get
$P(1)=3^{2 \times 1+2}-8 \times 1-9=64$, which is divisible by 8
Which is true.
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
$3^{2 k+2}-8 k-9$ is divisible by 8
$3^{2 k+2}-8 k-9=8 m$, where $m \in \mathrm{~N} .$.
Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.
Here
$3^{2(k+1)+2}-8(k+1)-9$
We can write it as
$=3^{2 k+2} \cdot 3^{2}-8 \mathrm{k}-8-9$
By adding and subtracting 8 k and 9 we get
$=3^{2}\left(3^{2 k+2}-8 \mathrm{k}-9+8 \mathrm{k}+9\right)-8 \mathrm{k}-17$

On further simplification
$=3^{2}\left(3^{2 k+2}-8 k-9\right)+3^{2}(8 k+9)-8 k-17$
From equation (1) we get
$=9.8 \mathrm{~m}+9(8 \mathrm{k}+9)-8 \mathrm{k}-17$
By multiplying the terms
$=9.8 \mathrm{~m}+72 \mathrm{k}+81-8 \mathrm{k}-17$
So we get
$=9.8 \mathrm{~m}+64 \mathrm{k}+64$
By taking out the common terms
$=8(9 \mathrm{~m}+8 \mathrm{k}+8)$
$=8 \mathrm{r}$, where $\mathrm{r}=(9 \mathrm{~m}+8 \mathrm{k}+8)$ is a natural number
So $3{ }^{2 k+1)+2}-8(k+1)-9$ is divisible by 8
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Therefore, by the principle of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, i.e., n .
23. $41^{n}-14^{n}$ is a multiple of 27

Solution:

We can write the given statement as
$\mathrm{P}(n): 41^{n}-14^{n}$ is a multiple of 27
If $\mathrm{n}=1$ we get
$P(1)=41^{1}-14^{1}=27$, which is a multiple by 27
Which is true.
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
$41^{k}-14^{k}$ is a multiple of 27
$41^{k}-14^{k}=27 m$, where $m \in \mathrm{~N}$
Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.
Here
$41^{k+1}-14^{k+1}$

We can write it as
$=41^{\mathrm{k}} .41-14^{\mathrm{k}} .14$
By adding and subtracting 14^{k} we get
$=41\left(41^{k}-14^{k}+14^{k}\right)-14^{k} .14$
On further simplification
$=41\left(41^{k}-14^{k}\right)+41.14^{k}-14^{k} .14$
From equation (1) we get
$=41.27 \mathrm{~m}+14^{k}(41-14)$
By multiplying the terms
$=41.27 \mathrm{~m}+27.14^{\mathrm{k}}$
By taking out the common terms
$=27\left(41 \mathrm{~m}-14^{k}\right)$
$=27 \mathrm{r}$, where $\mathrm{r}=\left(41 \mathrm{~m}-14^{k}\right)$ is a natural number
So $41^{k+1}-14^{k+1}$ is a multiple of 27
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Therefore, by the principle of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, i.e., n .
24. $(2 n+7)<(n+3)^{2}$

Solution:

We can write the given statement as
$\mathrm{P}(n):(2 n+7)<(n+3) 2$
If $\mathrm{n}=1$ we get
$2.1+7=9<(1+3)^{2}=16$
Which is true.
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
$(2 k+7)<(k+3)^{2}$
Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.
Here
$\{2(\mathrm{k}+1)+7\}=(2 \mathrm{k}+7)+2$
We can write it as
$=\{2(\mathrm{k}+1)+7\}$
From equation (1) we get
$(2 k+7)+2<(k+3)^{2}+2$
By expanding the terms
$2(\mathrm{k}+1)+7<\mathrm{k}^{2}+6 \mathrm{k}+9+2$
On further calculation
$2(k+1)+7<k^{2}+6 k+11$
Here $\mathrm{k}^{2}+6 \mathrm{k}+11<\mathrm{k}^{2}+8 \mathrm{k}+16$
We can write it as
$2(k+1)+7<(k+4)^{2}$
$2(\mathrm{k}+1)+7<\{(\mathrm{k}+1)+3\}^{2}$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Therefore, by the principle of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural numbers, i.e., n .

