EXERCISE 5.1

Express each of the complex numbers given in Exercises 1 to 10 in the form $\mathbf{a}+\mathbf{i b}$.

1. $(5 \mathrm{i})(-3 / 5 \mathrm{i})$

Solution:
(5i) $(-3 / 5 i)=5 \times(-3 / 5) \mathrm{xi}^{2}$
$=-3 x-1\left[i^{2}=-1\right]$
$=3$
Hence,
$(5 \mathrm{i})(-3 / 5 \mathrm{i})=3+\mathrm{i} 0$
2. $\mathbf{i}^{9}+\mathbf{i}^{19}$

Solution:
$\mathrm{i}^{9}+\mathrm{i}^{19}=\left(\mathrm{i}^{2}\right)^{4} . \mathrm{i}+\left(\mathrm{i}^{2}\right)^{9} . \mathrm{i}$
$=(-1)^{4} \cdot \mathrm{i}+(-1)^{9} . \mathrm{i}$
$=1 \mathrm{xi}+-1 \mathrm{xi}$
$=\mathrm{i}-\mathrm{i}$
$=0$
Hence,
$\mathrm{i}^{9}+\mathrm{i}^{19}=0+\mathrm{i} 0$
3. i^{-39}

Solution:

$\mathrm{i}^{-39}=1 / \mathrm{i}^{39}=1 / \mathrm{i}^{4 \times 9+3}=1 /\left(1^{9} \times \mathrm{i}^{3}\right)=1 / \mathrm{i}^{3}=1 /(-\mathrm{i})\left[\mathrm{i}^{4}=1, \mathrm{i}^{3}=-\mathrm{I}\right.$ and $\left.\mathrm{i}^{2}=-1\right]$
Now, multiplying the numerator and denominator by i we get
$\mathrm{i}^{-39}=1 \mathrm{xi} /(-\mathrm{ix} \mathrm{i})$
$=\mathrm{i} / 1=\mathrm{i}$
Hence,
$\mathrm{i}^{-39}=0+\mathrm{i}$
4. $3(7+i 7)+i(7+i 7)$

Solution:
$3(7+i 7)+i(7+i 7)=21+i 21+i 7+i^{2} 7$
$=21+i 28-7\left[i^{2}=-1\right]$
$=14+i 28$
Hence,
$3(7+i 7)+i(7+i 7)=14+i 28$
5. $(1-i)-(-1+i 6)$

Solution:
$(1-i)-(-1+i 6)=1-i+1-i 6$
$=2-i 7$
Hence,
$(1-i)-(-1+i 6)=2-i 7$
6.
$\left(\frac{1}{5}+i \frac{2}{5}\right)-\left(4+i \frac{5}{2}\right)$
Solution:

$$
\begin{aligned}
& \left(\frac{1}{5}+i \frac{2}{5}\right)-\left(4+i \frac{5}{2}\right) \\
& =\frac{1}{5}+\frac{2}{5} i-4-\frac{5}{2} i \\
& =\left(\frac{1}{5}-4\right)+i\left(\frac{2}{5}-\frac{5}{2}\right) \\
& =\frac{-19}{5}+i\left(\frac{-21}{10}\right) \\
& =\frac{-19}{5}-\frac{21}{10} i
\end{aligned}
$$

Hence,

$$
\left(\frac{1}{5}+i \frac{2}{5}\right)-\left(4+i \frac{5}{2}\right)=\frac{-19}{5}-\frac{21}{10} i
$$

7. $\left[\left(\frac{1}{3}+i \frac{7}{3}\right)+\left(4+i \frac{1}{3}\right)\right]-\left(-\frac{4}{3}+i\right)$

Solution:

$$
\begin{aligned}
& {\left[\left(\frac{1}{3}+i \frac{7}{3}\right)+\left(4+i \frac{1}{3}\right)\right]-\left(\frac{-4}{3}+i\right)} \\
& =\frac{1}{3}+\frac{7}{3} i+4+\frac{1}{3} i+\frac{4}{3}-i \\
& =\left(\frac{1}{3}+4+\frac{4}{3}\right)+i\left(\frac{7}{3}+\frac{1}{3}-1\right) \\
& =\frac{17}{3}+i \frac{5}{3}
\end{aligned}
$$

Hence,
$\left[\left(\frac{1}{3}+i \frac{7}{3}\right)+\left(4+i \frac{1}{3}\right)\right]-\left(-\frac{4}{3}+i\right)=\frac{17}{3}+i \frac{5}{3}$
8. $(1-i)^{4}$

Solution:
$(1-i)^{4}=\left[(1-i)^{2}\right]^{2}$
$=\left[1+i^{2}-2 i\right]^{2}$
$=[1-1-2 i]^{2}\left[i^{2}=-1\right]$
$=(-2 \mathrm{i})^{2}$
$=4(-1)$
$=-4$
Hence, $(1-i)^{4}=-4+0 i$
9. $(1 / 3+3 i)^{3}$

Solution:

$$
\begin{array}{rlr}
\left(\frac{1}{3}+3 i\right)^{3} & =\left(\frac{1}{3}\right)^{3}+(3 i)^{3}+3\left(\frac{1}{3}\right)(3 i)\left(\frac{1}{3}+3 i\right) \\
& =\frac{1}{27}+27 i^{3}+3 i\left(\frac{1}{3}+3 i\right) & \\
& =\frac{1}{27}+27(-i)+i+9 i^{2} & {\left[i^{3}=-i\right]} \\
& =\frac{1}{27}-27 i+i-9 & {\left[i^{2}=-1\right]} \\
& =\left(\frac{1}{27}-9\right)+i(-27+1) & \\
& =\frac{-242}{27}-26 i &
\end{array}
$$

Hence, $(1 / 3+3 i)^{3}=-242 / 27-26 i$
10. $(-2-1 / 3 i)^{3}$

Solution:

$$
\begin{array}{rlrl}
\left(-2-\frac{1}{3} i\right)^{3} & =(-1)^{3}\left(2+\frac{1}{3} i\right)^{3} & \\
& =-\left[2^{3}+\left(\frac{i}{3}\right)^{3}+3(2)\left(\frac{i}{3}\right)\left(2+\frac{i}{3}\right)\right] \\
& =-\left[8+\frac{i^{3}}{27}+2 i\left(2+\frac{i}{3}\right)\right] & \\
& =-\left[8-\frac{i}{27}+4 i+\frac{2 i^{2}}{3}\right] & & {\left[i^{3}=-i\right]} \\
& =-\left[8-\frac{i}{27}+4 i-\frac{2}{3}\right] & & \\
& =-\left[\frac{22}{3}+\frac{107 i}{27}\right] & & \\
& =-\frac{22}{3}-\frac{107}{27} i &
\end{array}
$$

Hence,
$(-2-1 / 3 i)^{3}=-22 / 3-107 / 27 i$
Find the multiplicative inverse of each of the complex numbers given in Exercises 11 to 13.

11. 4 - 3 i

Solution:

Let's consider $z=4-3 i$
Then,
$=4+3 i$ and
$|z|^{2}=4^{2}+(-3)^{2}=16+9=25$
Thus, the multiplicative inverse of $4-3 i$ is given by Z^{-1}

$$
z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{4+3 i}{25}=\frac{4}{25}+\frac{3}{25} i
$$

12. $\sqrt{ } 5+3 i$

Solution:

Let's consider $z=\sqrt{ } 5+3 i$
Then, $\bar{z}=\sqrt{5}-3 i$ and $|z|^{2}=(\sqrt{5})^{2}+3^{2}=5+9=14$
$|z|^{2}=(\sqrt{5})^{2}+3^{2}=5+9=14$
Thus, the multiplicative inverse of $\sqrt{5}+3 i$ is given by z^{-1}
$z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{\sqrt{5}-3 i}{14}=\frac{\sqrt{5}}{14}-\frac{3 i}{14}$
13. -i

Solution:

Let's consider $z=-i$
Then, $\bar{z}=i$ and $|z|^{2}=1^{2}=1$
Thus, the multiplicative inverse of $-i$ is given by z^{-1}
$z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{i}{1}=i$
14. Express the following expression in the form of $a+i b:$
$\frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2} i)-(\sqrt{3}-i \sqrt{2})}$
Solution:

$$
\begin{aligned}
& \frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2} i)-(\sqrt{3}-i \sqrt{2})} \\
& =\frac{(3)^{2}-(i \sqrt{5})^{2}}{\sqrt{3}+\sqrt{2} i-\sqrt{3}+\sqrt{2} i} \\
& = \\
& \frac{9-5 i^{2}}{2 \sqrt{2} i} \\
& = \\
& \frac{9-5(-1)}{2 \sqrt{2} i} \\
& = \\
& \frac{9+5}{2 \sqrt{2} i} \times \frac{i}{i} \\
& = \\
& \frac{14 i}{2 \sqrt{2} i^{2}} \\
& = \\
& \frac{14 i}{2 \sqrt{2}}(-1) \\
& = \\
& \frac{-7 i}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
& =
\end{aligned} \quad\left[(a+b)(a-b)=a^{2}-b^{2}\right]
$$

Hence,

$$
\frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2} i)-(\sqrt{3}-i \sqrt{2})}=0+\frac{-7 \sqrt{2} i}{2}
$$

