EXERCISE 5.2

Find the modulus and the arguments of each of the complex numbers in Exercises 1 to 2.

1. $z=-1-i \sqrt{ } 3$

Solution:
Given,
$z=-1-i \sqrt{3}$
Let $\mathrm{r} \cos \theta=-1$ and $\mathrm{r} \sin \theta=-\sqrt{3}$
On squaring and adding, we get
$(r \cos \theta)^{2}+(r \sin \theta)^{2}=(-1)^{2}+(-\sqrt{3})^{2}$
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+3$
$r^{2}=4$ $\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]$
$r=\sqrt{4}=2$
[Conventionally, $\mathrm{r}>0$]
Thus, modulus $=2$
So, we have
$2 \cos \theta=-1$ and $2 \sin \theta=-\sqrt{3}$
$\cos \theta=\frac{-1}{2}$ and $\sin \theta=\frac{-\sqrt{3}}{2}$
As the values of both $\sin \theta$ and $\cos \theta$ are negative, θ lies in III Quadrant,
Argument $=-\left(\pi-\frac{\pi}{3}\right)=\frac{-2 \pi}{3}$
Therefore, the modulus and argument of the complex number $-1-\sqrt{3}$ i are 2 and $\frac{-2 \pi}{3}$ respectively.
2. $\mathrm{z}=-\sqrt{ } 3+\mathrm{i}$

Solution:

Given,
$z=-\sqrt{3}+i$
Let $r \cos \theta=-\sqrt{3}$ and $r \sin \theta=1$
On squaring and adding, we get
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-\sqrt{3})^{2}+1^{2}$

$$
\begin{aligned}
& r^{2}=3+1=4 \\
& r=\sqrt{4}=2
\end{aligned}
$$

$$
\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]
$$

Thus, modulus $=2$
So,

$$
2 \cos \theta=-\sqrt{3} \text { and } 2 \sin \theta=1
$$

$$
\cos \theta=\frac{-\sqrt{3}}{2} \text { and } \sin \theta=\frac{1}{2}
$$

$\therefore \theta=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}$
[As θ lies in the II quadrant]
Therefore, the modulus and argument of the complex number $-\sqrt{3}+i$ are 2 and $\frac{5 \pi}{6}$ respectively.
Convert each of the complex numbers given in Exercises 3 to 8 in the polar form:
3. 1 - i

Solution:

Given complex number,
$1-i$
Let $r \cos \theta=1$ and $r \sin \theta=-1$
On squaring and adding, we get
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=1^{2}+(-1)^{2}$
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1$
$r^{2}=2$
$r=\sqrt{2}=$ Modulus [Conventionally, $r>0$]
So,
$\sqrt{2} \cos \theta=1$ and $\sqrt{2} \sin \theta=-1$
$\cos \theta=\frac{1}{\sqrt{2}}$ and $\sin \theta=-\frac{1}{\sqrt{2}}$
$\therefore \theta=-\frac{\pi}{4} \quad$ [As θ lies in the IV quadrant]
So,

$$
\begin{aligned}
1-i & =r \cos \theta+i r \sin \theta=\sqrt{2} \cos \left(-\frac{\pi}{4}\right)+i \sqrt{2} \sin \left(-\frac{\pi}{4}\right) \\
& =\sqrt{2}\left[\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right]
\end{aligned}
$$

Hence, this is the required polar form.
4. $-1+i$

Solution:

Given complex number,
$-1+i$
Let $r \cos \theta=-1$ and $r \sin \theta=1$
On squaring and adding, we get
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-1)^{2}+1^{2}$
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1$
$r^{2}=2$
$r=\sqrt{2}$
[Conventionally, $r>0$]
So,

$$
\begin{aligned}
& \sqrt{2} \cos \theta=-1 \text { and } \sqrt{2} \sin \theta=1 \\
& \cos \theta=-\frac{1}{\sqrt{2}} \text { and } \sin \theta=\frac{1}{\sqrt{2}}
\end{aligned}
$$

$\therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4} \quad$ [As θ lies in the II quadrant]
Hence. it can be written as

$$
\begin{aligned}
& \begin{aligned}
-1+i & =r \cos \theta+i r \sin \theta=\sqrt{2} \cos \frac{3 \pi}{4}+i \sqrt{2} \sin \frac{3 \pi}{4} \\
& =\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)
\end{aligned} \\
& \text { This is the required polar form. }
\end{aligned}
$$

5. -1 - i

Solution:

Given complex number,
$-1-i$
Let $r \cos \theta=-1$ and $r \sin \theta=-1$
On squaring and adding, we get
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-1)^{2}+(-1)^{2}$
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1$
$r^{2}=2$
$r=\sqrt{2} \quad$ [Conventionally, $r>0$]
So,
$\sqrt{2} \cos \theta=-1$ and $\sqrt{2} \sin \theta=-1$
$\Rightarrow \cos \theta=-\frac{1}{\sqrt{2}}$ and $\sin \theta=-\frac{1}{\sqrt{2}}$
$\therefore \theta=-\left(\pi-\frac{\pi}{4}\right)=-\frac{3 \pi}{4} \quad$ [As θ lies in the III quadrant]
Hence, it can be written as

$$
\begin{aligned}
& \begin{aligned}
-1-i & =r \cos \theta+i r \sin \theta=\sqrt{2} \cos \frac{-3 \pi}{4}+i \sqrt{2} \sin \frac{-3 \pi}{4} \\
& =\sqrt{2}\left(\cos \frac{-3 \pi}{4}+i \sin \frac{-3 \pi}{4}\right)
\end{aligned} \\
& \text { This is the required polar form. }
\end{aligned}
$$

6. -3

Solution:

Given complex number, -3
Let $r \cos \theta=-3$ and $r \sin \theta=0$
On squaring and adding, we get
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-3)^{2}$

$$
r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=9
$$

$$
r^{2}=9
$$

$$
r=\sqrt{9}=3 \quad[\text { Conventionally, } r>0]
$$

So,

$$
3 \cos \theta=-3 \text { and } 3 \sin \theta=0
$$

$\Rightarrow \cos \theta=-1$ and $\sin \theta=0$
$\therefore \theta=\pi$
Hence, it can be written as
$-3=r \cos \theta+i r \sin \theta=3 \cos \pi+\hat{\mathcal{B}} \sin \pi=3(\cos \pi+i \sin \pi)$
This is the required polar form.
$7.3+i$
Solution:

Given complex number,
$\sqrt{3}+i$
Let $r \cos \theta=\sqrt{3}$ and $r \sin \theta=1$
On squaring and adding, we get
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(\sqrt{3})^{2}+1^{2}$
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=3+1$
$r^{2}=4$
$r=\sqrt{4}=2 \quad$ [Conventionally, $r>0$]
So,

$$
2 \cos \theta=\sqrt{3} \text { and } 2 \sin \theta=1
$$

$\Rightarrow \cos \theta=\frac{\sqrt{3}}{2}$ and $\sin \theta=\frac{1}{2}$
$\therefore \theta=\frac{\pi}{6}$
[As θ lies in the I quadrant]
Hence, it can be written as

$$
\begin{aligned}
\sqrt{3}+i & =r \cos \theta+i r \sin \theta=2 \cos \frac{\pi}{6}+i 2 \sin \frac{\pi}{6} \\
& =2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)
\end{aligned}
$$

This is the required polar form.

8. i

Solution:
Given complex number, i
Let $r \cos \theta=0$ and $r \sin \theta=1$
On squaring and adding, we get
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=0^{2}+1^{2}$
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1$
$r^{2}=1$
$r=\sqrt{1}=1 \quad$ [Conventionally, $r>0$]
So,
$\cos \theta=0$ and $\sin \theta=1$
$\therefore \theta=\frac{\pi}{2}$
Hence, it can be written as
$i=r \cos \theta+i r \sin \theta=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}$
This is the required polar form.

