MISCELLANEOUS EXERCISE

1.

Evaluate: $\left[i^{18}+\left(\frac{1}{i}\right)^{25}\right]^{3}$

Solution:

$$
\begin{aligned}
& {\left[i^{18}+\left(\frac{1}{i}\right)^{25}\right]^{3}} \\
& =\left[i^{4 \times 4+2}+\frac{1}{i^{4 \times 6+1}}\right]^{3} \\
& =\left[\left(i^{4}\right)^{4} \cdot i^{2}+\frac{1}{\left(i^{4}\right)^{6} \cdot i}\right]^{3} \\
& =\left[i^{2}+\frac{1}{i}\right]^{3} \\
& =\left[-1+\frac{1}{i} \times \frac{i}{i}\right]^{3} \\
& =\left[-1+\frac{i}{i^{2}}\right]^{3} \\
& =[-1-i]^{3} \\
& =(-1)^{3}[1+i]^{3} \\
& =-\left[1^{3}+i^{3}+3 \cdot 1 \cdot i(1+i)\right] \\
& =-\left[1+i^{3}+3 i+3 i^{2}\right] \\
& =-[1-i+3 i-3] \\
& =-[-2+2 i] \\
& =2-2 i
\end{aligned}
$$

2. For any two complex numbers z_{1} and z_{2}, prove that
$\operatorname{Re}\left(\mathbf{z}_{1} \mathbf{z}_{2}\right)=\operatorname{Re}_{\mathbf{z}_{1}} \operatorname{Re}_{\mathbf{z}_{2}}-\operatorname{Im}_{\mathbf{z}_{1}} \operatorname{Im} \mathbf{z}_{2}$

Solution:

Lets's assume $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ as two complex numbers
Product of these complex numbers, $z_{1} z_{2}$

$$
\begin{array}{rlr}
z_{1} z_{2} & =\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right) & \\
& =x_{1}\left(x_{2}+i y_{2}\right)+i y_{1}\left(x_{2}+i y_{2}\right) & \\
& =x_{1} x_{2}+i x_{1} y_{2}+i y_{1} x_{2}+i^{2} y_{1} y_{2} & \\
& =x_{1} x_{2}+i x_{1} y_{2}+i y_{1} x_{2}-y_{1} y_{2} & {\left[i^{2}=-1\right]} \\
& =\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+y_{1} x_{2}\right) &
\end{array}
$$

Now,

$$
\begin{aligned}
\operatorname{Re}\left(z_{1} z_{2}\right) & =x_{1} x_{2}-y_{1} y_{2} \\
\Rightarrow \operatorname{Re}\left(z_{1} z_{2}\right) & =\operatorname{Re} z_{1} \operatorname{Re} z_{2}-\operatorname{Im} z_{1} \operatorname{Im} z_{2}
\end{aligned}
$$

Hence, proved.
3. Reduce to the standard form.

$$
\left(\frac{1}{1-4 i}-\frac{2}{1+i}\right)\left(\frac{3-4 i}{5+i}\right)
$$

Solution:

$$
\begin{aligned}
& \left(\frac{1}{1-4 i}-\frac{2}{1+i}\right)\left(\frac{3-4 i}{5+i}\right)=\left[\frac{(1+i)-2(1-4 i)}{(1-4 i)(1+i)}\right]\left[\frac{3-4 i}{5+i}\right] \\
& =\left[\frac{1+i-2+8 i}{1+i-4 i-4 i^{2}}\right]\left[\frac{3-4 i}{5+i}\right]=\left[\frac{-1+9 i}{5-3 i}\right]\left[\frac{3-4 i}{5+i}\right] \\
& =\left[\frac{-3+4 i+27 i-36 i^{2}}{25+5 i-15 i-3 i^{2}}\right]=\frac{33+31 i}{28-10 i}=\frac{33+31 i}{2(14-5 i)} \\
& \left.=\frac{(33+31 i)}{2(14-5 i)} \times \frac{(14+5 i)}{(14+5 i)} \quad \quad \text { On multiplying numerator and denominator by }(14+5 i)\right] \\
& =\frac{462+165 i+434 i+155 i^{2}}{2\left[(14)^{2}-(5 i)^{2}\right]}=\frac{307+599 i}{2\left(196-25 i^{2}\right)} \\
& =\frac{307+599 i}{2(221)}=\frac{307+599 i}{442}=\frac{307}{442}+\frac{599 i}{442}
\end{aligned}
$$

Hence, this is the required standard form.
4.

If $x-i y=\sqrt{\frac{a-i b}{c-i d}}$ prove that $\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$.

Solution:

Given,

$$
\begin{aligned}
x-i y & =\sqrt{\frac{a-i b}{c-i d}} \\
& =\sqrt{\frac{a-i b}{c-i d} \times \frac{c+i d}{c+i d}}[\text { On multiplying numerator and deno min ator by }(c+i d)] \\
& =\sqrt{\frac{(a c+b d)+i(a d-b c)}{c^{2}+d^{2}}}
\end{aligned}
$$

So, $(x-i y)^{2}=\frac{(a c+b d)+i(a d-b c)}{c^{2}+d^{2}}$
$x^{2}-y^{2}-2 i x y=\frac{(a c+b d)+i(a d-b c)}{c^{2}+d^{2}}$
On comparing real and imaginary parts, we get

$$
\begin{equation*}
x^{2}-y^{2}=\frac{a c+b d}{c^{2}+d^{2}},-2 x y=\frac{a d-b c}{c^{2}+d^{2}} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)^{2}+4 x^{2} y^{2} \\
& =\left(\frac{a c+b d}{c^{2}+d^{2}}\right)^{2}+\left(\frac{a d-b c}{c^{2}+d^{2}}\right)^{2} \quad[U \sin g(1)] \\
& =\frac{a^{2} c^{2}+b^{2} d^{2}+2 a c b d+a^{2} d^{2}+b^{2} c^{2}-2 a d b c}{\left(c^{2}+d^{2}\right)^{2}} \\
& =\frac{a^{2} c^{2}+b^{2} d^{2}+a^{2} d^{2}+b^{2} c^{2}}{\left(c^{2}+d^{2}\right)^{2}}
\end{aligned}
$$

$$
=\frac{\mathrm{a}^{2}\left(\mathrm{c}^{2}+\mathrm{d}^{2}\right)+\mathrm{b}^{2}\left(\mathrm{c}^{2}+\mathrm{d}^{2}\right)}{\left(\mathrm{c}^{2}+\mathrm{d}^{2}\right)^{2}}
$$

$$
=\frac{\left(\mathrm{c}^{2}+\mathrm{d}^{2}\right)\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}{\left(\mathrm{c}^{2}+\mathrm{d}^{2}\right)^{2}}
$$

$$
=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}
$$

- Hence Proved

5. Convert the following into the polar form:
(i) $\frac{1+7 i}{(2-i)^{2}}$,(ii) $\frac{1+3 i}{1-2 i}$

Solution:
(i) Here, $z=\frac{1+7 i}{(2-i)^{2}}$
$=\frac{1+7 i}{(2-i)^{2}}=\frac{1+7 i}{4+i^{2}-4 i}=\frac{1+7 i}{4-1-4 i}$
$=\frac{1+7 i}{3-4 i} \times \frac{3+4 i}{3+4 i}=\frac{3+4 i+21 i+28 i^{2}}{3^{2}+4^{2}}$ [Multiplying by its conjugate in the numerator
$=\frac{3+4 i+21 i-28}{3^{2}+4^{2}}=\frac{-25+25 i}{25}$
$=-1+i$
Let $r \cos \theta=-1$ and $r \sin \theta=1$
On squaring and adding, we get

$$
\begin{array}{lr}
r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1 & \\
r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=2 & \\
r^{2}=2 & {\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]} \\
r=\sqrt{2} & {[\text { Conventionally, } r>0]}
\end{array}
$$

So,
$\sqrt{2} \cos \theta=-1$ and $\sqrt{2} \sin \theta=1$
$\Rightarrow \cos \theta=\frac{-1}{\sqrt{2}}$ and $\sin \theta=\frac{1}{\sqrt{2}}$
$\therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4} \quad$ [As θ lies in II quadrant]
Expressing as, $z=r \cos \theta+i r \sin \theta$
$=\sqrt{2} \cos \frac{3 \pi}{4}+i \sqrt{2} \sin \frac{3 \pi}{4}=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$
Therefore, this is the required polar form.
(ii) Let, $z=\frac{1+3 i}{1-2 i}$

$$
\begin{aligned}
& =\frac{1+3 i}{1-2 i} \times \frac{1+2 i}{1+2 i} \\
& =\frac{1+2 i+3 i-6}{1+4} \\
& =\frac{-5+5 i}{5}=-1+i
\end{aligned}
$$

Now,
Let $r \cos \theta=-1$ and $r \sin \theta=1$
On squaring and adding, we get

$$
\begin{aligned}
& r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1 \\
& r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=2 \\
& r^{2}=2 \quad\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right] \\
& \Rightarrow r=\sqrt{2} \quad[\text { Conventionally, } r>0] \\
& \therefore \sqrt{2} \cos \theta=-1 \text { and } \sqrt{2} \sin \theta=1 \\
& \cos \theta=\frac{-1}{\sqrt{2}} \text { and } \sin \theta=\frac{1}{\sqrt{2}} \\
& \therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4} \quad[\text { As } \theta \text { lies in II quadrant] }
\end{aligned}
$$

Expressing as, $z=r \cos \theta+i r \sin \theta$

$$
\mathrm{z}=\sqrt{2} \cos \frac{3 \pi}{4}+i \sqrt{2} \sin \frac{3 \pi}{4}=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)
$$

Therefore, this is the required polar form.
Solve each of the equations in Exercises 6 to 9.
6. $3 x^{2}-4 x+20 / 3=0$

Solution:

Given the quadratic equation, $3 x^{2}-4 x+20 / 3=0$
It can be re-written as: $9 \mathrm{x}^{2}-12 \mathrm{x}+20=0$
On comparing it with $a x^{2}+b x+c=0$, we get
$a=9, b=-12$, and $c=20$
So, the discriminant of the given equation will be
$\mathrm{D}=b^{2}-4 a c=(-12)^{2}-4 \times 9 \times 20=144-720=-576$
Hence, the required solutions are

$$
\begin{aligned}
\mathrm{x} & =\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-12) \pm \sqrt{-576}}{2 \times 9}=\frac{12 \pm \sqrt{576} i}{18} \\
& =\frac{12 \pm 24 i}{18}=\frac{6(2 \pm 4 i)}{18}=\frac{2 \pm 4 i}{3}=\frac{2}{3} \pm \frac{4}{3} i
\end{aligned}
$$

7. $x^{2}-2 x+3 / 2=0$

Solution:

Given the quadratic equation, $\mathrm{x}^{2}-2 \mathrm{x}+3 / 2=0$
It can be re-written as $2 x^{2}-4 x+3=0$
On comparing it with $a x^{2}+b x+c=0$, we get
$a=2, b=-4$, and $c=3$
So, the discriminant of the given equation will be
$\mathrm{D}=b^{2}-4 a c=(-4)^{2}-4 \times 2 \times 3=16-24=-8$
Hence, the required solutions are

$$
\begin{aligned}
\mathrm{x} & =\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-4) \pm \sqrt{-8}}{2 \times 2}=\frac{4 \pm 2 \sqrt{2} i}{4} \quad[\sqrt{-1}=i] \\
& =\frac{2 \pm \sqrt{2} i}{2}=1 \pm \frac{\sqrt{2}}{2} i
\end{aligned}
$$

8. $27 \mathrm{x}^{2}-10 \mathrm{x}+1=0$

Solution:

Given the quadratic equation, $27 x^{2}-10 x+1=0$
On comparing it with $a x^{2}+b x+c=0$, we get
$a=27, b=-10$, and $c=1$
So, the discriminant of the given equation will be
$\mathrm{D}=b^{2}-4 a c=(-10)^{2}-4 \times 27 \times 1=100-108=-8$
Hence, the required solutions are

$$
\begin{aligned}
\mathrm{x} & =\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-10) \pm \sqrt{-8}}{2 \times 27}=\frac{10 \pm 2 \sqrt{2} i}{54} \\
& =\frac{5 \pm \sqrt{2} i}{27}=\frac{5}{27} \pm \frac{\sqrt{2}}{27} i
\end{aligned}
$$

9. $21 x^{2}-28 x+10=0$

Solution:

Given the quadratic equation, $21 x^{2}-28 x+10=0$
On comparing it with $a x^{2}+b x+c=0$, we have
$a=21, b=-28$, and $c=10$
So, the discriminant of the given equation will be
$\mathrm{D}=b^{2}-4 a c=(-28)^{2}-4 \times 21 \times 10=784-840=-56$
Hence, the required solutions are

$$
\begin{aligned}
\mathrm{x} & =\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-28) \pm \sqrt{-56}}{2 \times 21}=\frac{28 \pm \sqrt{56} i}{42} \\
& =\frac{28 \pm 2 \sqrt{14} i}{42}=\frac{28}{42} \pm \frac{2 \sqrt{14}}{42} i=\frac{2}{3} \pm \frac{\sqrt{14}}{21} i
\end{aligned}
$$

10. If $\mathrm{z}_{1}=2-i, \mathrm{z}_{2}=1+i$, find

$$
\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|
$$

Solution:

Given, $\mathrm{z}_{1}=2-i, \mathrm{z}_{2}=1+i$

So,
$\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|=\left|\frac{(2-i)+(1+i)+1}{(2-i)-(1+i)+1}\right|$
$=\left|\frac{4}{2-2 i}\right|=\left|\frac{4}{2(1-i)}\right|$
$=\left|\frac{2}{1-i} \times \frac{1+i}{1+i}\right|=\left|\frac{2(1+i)}{1^{2}-i^{2}}\right|$
$=\left|\frac{2(1+i)}{1+1}\right| \quad\left[i^{2}=-1\right]$
$=\left|\frac{2(1+i)}{2}\right|$
$=|1+i|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$
Hence, the value of $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|$ is $\sqrt{2}$.
11.

If $a+i b=\frac{(x+i)^{2}}{2 x^{2}+1}$, prove that $a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}$.
Solution:

Given,
$a+i b=\frac{(x+i)^{2}}{2 x^{2}+1}$

$$
\begin{aligned}
& =\frac{x^{2}+i^{2}+2 x i}{2 x^{2}+1} \\
& =\frac{x^{2}-1+i 2 x}{2 x^{2}+1} \\
& =\frac{x^{2}-1}{2 x^{2}+1}+i\left(\frac{2 x}{2 x^{2}+1}\right)
\end{aligned}
$$

Comparing the real and imaginary parts, we have

$$
\begin{aligned}
& a=\frac{x^{2}-1}{2 x^{2}+1} \text { and } b=\frac{2 x}{2 x^{2}+1} \\
& \begin{aligned}
\therefore a^{2}+b^{2} & =\left(\frac{x^{2}-1}{2 x^{2}+1}\right)^{2}+\left(\frac{2 x}{2 x^{2}+1}\right)^{2} \\
& =\frac{x^{4}+1-2 x^{2}+4 x^{2}}{(2 x+1)^{2}} \\
& =\frac{x^{4}+1+2 x^{2}}{\left(2 x^{2}+1\right)^{2}} \\
& =\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}
\end{aligned}
\end{aligned}
$$

Hence proved,

$$
a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}
$$

12. Let $\mathrm{z}_{1}=2-i, \mathrm{z}_{2}=-2+i$. Find
(i) $\operatorname{Re}\left(\frac{z_{1} z_{2}}{\bar{z}_{1}}\right)$,(ii) $\operatorname{Im}\left(\frac{1}{z_{1} \bar{z}_{1}}\right)$

Solution:

Given,
$z_{1}=2-i, z_{2}=-2+i$
(i) $\mathrm{z}_{1} \mathrm{z}_{2}=(2-\mathrm{i})(-2+\mathrm{i})=-4+2 \mathrm{i}+2 \mathrm{i}-\mathrm{i}^{2}=-4+4 \mathrm{i}-(-1)=-3+4 \mathrm{i}$
$\overline{\mathrm{z}}_{1}=2+\mathrm{i}$
$\therefore \frac{z_{1} z_{2}}{\bar{z}_{1}}=\frac{-3+4 i}{2+i}$
On multiplying numerator and denominator by $(2-i)$, we get

$$
\begin{aligned}
\frac{z_{1} z_{2}}{\bar{z}_{1}} & =\frac{(-3+4 i)(2-i)}{(2+i)(2-i)}=\frac{-6+3 i+8 i-4 i^{2}}{2^{2}+1^{2}}=\frac{-6+11 i-4(-1)}{2^{2}+1^{2}} \\
& =\frac{-2+11 i}{5}=\frac{-2}{5}+\frac{11}{5} i
\end{aligned}
$$

Comparing the real parts, we have

$$
\operatorname{Re}\left(\frac{z_{1} z_{2}}{\bar{z}_{1}}\right)=\frac{-2}{5}
$$

(ii) $\frac{1}{z_{1} \overline{\mathrm{z}}_{1}}=\frac{1}{(2-\mathrm{i})(2+\mathrm{i})}=\frac{1}{(2)^{2}+(1)^{2}}=\frac{1}{5}$

On comparing the imaginary part, we get

$$
\operatorname{Im}\left(\frac{1}{z_{1} \bar{z}_{1}}\right)=0
$$

13. Find the modulus and argument of the complex number.
$\frac{1+2 i}{1-3 i}$
Solution:

Let $z=\frac{1+2 i}{1-3 i}$, then
$z=\frac{1+2 i}{1-3 i} \times \frac{1+3 i}{1+3 i}=\frac{1+3 i+2 i+6 i^{2}}{1^{2}+3^{2}}=\frac{1+5 i+6(-1)}{1+9}$
$=\frac{-5+5 i}{10}=\frac{-5}{10}+\frac{5 i}{10}=\frac{-1}{2}+\frac{1}{2} i$
Let $z=r \cos \theta+i r \sin \theta$
So,

$$
r \cos \theta=\frac{-1}{2} \text { and } r \sin \theta=\frac{1}{2}
$$

On squaring and adding, we get

$$
\begin{array}{ll}
r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\left(\frac{-1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2} \\
r^{2}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} & \quad[\text { Conventionally }, r>0] \\
r=\frac{1}{\sqrt{2}} &
\end{array}
$$

Now,

$$
\begin{aligned}
& \frac{1}{\sqrt{2}} \cos \theta=\frac{-1}{2} \text { and } \frac{1}{\sqrt{2}} \sin \theta=\frac{1}{2} \\
\Rightarrow & \cos \theta=\frac{-1}{\sqrt{2}} \text { and } \sin \theta=\frac{1}{\sqrt{2}}
\end{aligned}
$$

$$
\therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}
$$

[As θ lies in the II quadrant]
14. Find the real numbers x and y if $(x-i y)(3+5 i)$ is the conjugate of $-6-24 i$.

Solution:
Let's assume $\mathrm{z}=(x-i y)(3+5 i)$
$z=3 x+5 x i-3 y i-5 y i^{2}=3 x+5 x i-3 y i+5 y=(3 x+5 y)+i(5 x-3 y)$
$\therefore \bar{z}=(3 x+5 y)-i(5 x-3 y)$
Also given, $\bar{z}=-6-24 i$
And,
$(3 \mathrm{x}+5 \mathrm{y})-i(5 \mathrm{x}-3 \mathrm{y})=-6-24 i$
On equating real and imaginary parts, we have
$3 x+5 y=-6$ \qquad
$5 x-3 y=24 \ldots \ldots$ (ii)

Performing (i) x $3+$ (ii) x 5 , we get
$(9 x+15 y)+(25 x-15 y)=-18+120$
$34 x=102$
$x=102 / 34=3$
Putting the value of x in equation (i), we get
$3(3)+5 y=-6$
$5 y=-6-9=-15$
$y=-3$
Therefore, the values of x and y are 3 and -3 , respectively.
15. Find the modulus of
$\frac{1+i}{1-i}-\frac{1-i}{1+i}$
Solution:
$\frac{1+i}{1-i}-\frac{1-i}{1+i}=\frac{(1+i)^{2}-(1-i)^{2}}{(1-i)(1+i)}$

$$
\begin{gathered}
=\frac{1+i^{2}+2 i-1-i^{2}+2 i}{1^{2}+1^{2}} \\
=\frac{4 i}{2}=2 i \\
\therefore\left|\frac{1+i}{1-i}-\frac{1-i}{1+i}\right|=|2 i|=\sqrt{2^{2}}=2
\end{gathered}
$$

16. If $(x+i y)^{3}=u+i v$, then show that
$\frac{u}{x}+\frac{v}{y}=4\left(x^{2}-y^{2}\right)$
Solution:

Given,
$(x+i y)^{3}=u+i v$
$x^{3}+(i y)^{3}+3 \cdot x \cdot i y(x+i y)=u+i v$
$x^{3}+i^{3} y^{3}+3 x^{2} y i+3 x y^{2} i^{2}=u+i v$
$x^{3}-i y^{3}+3 x^{2} y i-3 x y^{2}=u+i v$
$\left(x^{3}-3 x y^{2}\right)+i\left(3 x^{2} y-y^{3}\right)=u+i v$
On equating real and imaginary parts, we get

$$
\begin{aligned}
& u=x^{3}-3 x y^{2}, v=3 x^{2} y-y^{3} \\
& \begin{aligned}
\frac{u}{x}+\frac{v}{y} & =\frac{x^{3}-3 x y^{2}}{x}+\frac{3 x^{2} y-y^{3}}{y} \\
& =\frac{x\left(x^{2}-3 y^{2}\right)}{x}+\frac{y\left(3 x^{2}-y^{2}\right)}{y} \\
& =x^{2}-3 y^{2}+3 x^{2}-y^{2} \\
& =4 x^{2}-4 y^{2} \\
& =4\left(x^{2}-y^{2}\right) \\
\therefore \frac{u}{x}+\frac{v}{y} & =4\left(x^{2}-y^{2}\right)
\end{aligned}
\end{aligned}
$$

Hence proved.
17. If α and β are different complex numbers with $|\beta|=1$, then find
$\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$

Solution:

Let $\alpha=a+i b$ and $\beta=x+i y$
Given, $|\beta|=1$
So, $\sqrt{x^{2}+y^{2}}=1$
$\Rightarrow x^{2}+y^{2}=1$
$\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|=\left|\frac{(x+i y)-(a+i b)}{1-(a-i b)(x+i y)}\right|$
$=\left|\frac{(x-a)+i(y-b)}{1-(a x+a i y-i b x+b y)}\right|$
$=\left|\frac{(x-a)+i(y-b)}{(1-a x-b y)+i(b x-a y)}\right|$
$=\frac{|(x-a)+i(y-b)|}{|(1-a x-b y)+i(b x-a y)|}$
$\left[\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}\right]$

$$
=\frac{\sqrt{(x-a)^{2}+(y-b)^{2}}}{\sqrt{(1-a x-b y)^{2}+(b x-a y)^{2}}}
$$

$$
=\frac{\sqrt{x^{2}+a^{2}-2 a x+y^{2}+b^{2}-2 b y}}{\sqrt{1+a^{2} x^{2}+b^{2} y^{2}-2 a x+2 a b x y-2 b y+b^{2} x^{2}+a^{2} y^{2}-2 a b x y}}
$$

$$
=\frac{\sqrt{\left(x^{2}+y^{2}\right)+a^{2}+b^{2}-2 a x-2 b y}}{\sqrt{1+a^{2}\left(x^{2}+y^{2}\right)+b^{2}\left(y^{2}+x^{2}\right)-2 a x-2 b y}}
$$

$=\frac{\sqrt{\left(x^{2}+y^{2}\right)+a^{2}+b^{2}-2 a x-2 b y}}{\sqrt{1+a^{2}\left(x^{2}+y^{2}\right)+b^{2}\left(y^{2}+x^{2}\right)-2 a x-2 b y}}$
$=\frac{\sqrt{1+a^{2}+b^{2}-2 a x-2 b y}}{\sqrt{1+a^{2}+b^{2}-2 a x-2 b y}}$
$[U \operatorname{sing}(1)]$
$=1$
$\therefore\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|=1$
18. Find the number of non-zero integral solutions of the equation $|1-i|^{x}=2^{x}$

Solution:

$$
\begin{aligned}
& |1-i|^{x}=2^{x} \\
& \left(\sqrt{1^{2}+(-1)^{2}}\right)^{x}=2^{x} \\
& (\sqrt{2})^{x}=2^{x} \\
& 2^{\frac{x}{2}}=2^{x} \\
& \frac{x}{2}=x \\
& x=2 x \\
& 2 x-x=0 \\
& x=0
\end{aligned}
$$

Therefore, 0 is the only integral solution of the given equation.
Hence, the number of non-zero integral solutions of the given equation is 0 .
19. If $(a+i b)(c+i d)(e+i f)(g+i h)=\mathbf{A}+i \mathrm{~B}$, then show that
$\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=\mathbf{A}^{2}+\mathbf{B}^{2}$

Solution:

Given,

$$
\begin{aligned}
& (a+i b)(c+i d)(e+i f)(g+i h)=\mathrm{A}+i \mathrm{~B} \\
& \therefore|(a+i b)(c+i d)(e+i f)(g+i h)|=|\mathrm{A}+i \mathrm{~B}| \\
& \Rightarrow|(a+i b)| \times(c+i d)\left|\times|(e+i f)| \times|(g+i h)|=|\mathrm{A}+i \mathrm{~B}| \quad \quad\left[\left|z_{1} z_{2}\right|=\left|z_{1}\right| \mid z_{z}\right.\right. \\
& \sqrt{a^{2}+b^{2}} \times \sqrt{c^{2}+d^{2}} \times \sqrt{e^{2}+f^{2}} \times \sqrt{g^{2}+h^{2}}=\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}}
\end{aligned}
$$

On squaring both sides, we get
$\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=A^{2}+\mathrm{B}^{2}$

$$
\left(\frac{1+i}{1-i}\right)^{m}=1
$$

Hence proved.
$\left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^{m}=1$
$\left(\frac{(1+i)^{2}}{1^{2}+1^{2}}\right)^{m}=1$
$\left(\frac{1^{2}+i^{2}+2 i}{2}\right)^{m}=1$
$\left(\frac{1-1+2 i}{2}\right)^{m}=1$
$\left(\frac{2 i}{2}\right)^{m}=1$
$i^{\prime \prime \prime}=1$
Hence, $m=4 k$, where k is some integer.

Thus, the least positive integer is 1 .
Therefore, the least positive integral value of m is $4(=4 \times 1)$.

