EXERCISE 5.1

Express each of the complex numbers given in Exercises 1 to 10 in the form $\mathbf{a}+\mathbf{i b}$.

1. $(5 \mathrm{i})(-3 / 5 \mathrm{i})$

Solution:
(5i) $(-3 / 5 i)=5 \times(-3 / 5) \mathrm{xi}^{2}$
$=-3 x-1\left[i^{2}=-1\right]$
$=3$
Hence,
$(5 \mathrm{i})(-3 / 5 \mathrm{i})=3+\mathrm{i} 0$
2. $\mathbf{i}^{9}+\mathbf{i}^{19}$

Solution:
$\mathrm{i}^{9}+\mathrm{i}^{19}=\left(\mathrm{i}^{2}\right)^{4} . \mathrm{i}+\left(\mathrm{i}^{2}\right)^{9} . \mathrm{i}$
$=(-1)^{4} \cdot \mathrm{i}+(-1)^{9} . \mathrm{i}$
$=1 \mathrm{xi}+-1 \mathrm{xi}$
$=\mathrm{i}-\mathrm{i}$
$=0$
Hence,
$\mathrm{i}^{9}+\mathrm{i}^{19}=0+\mathrm{i} 0$
3. i^{-39}

Solution:

$\mathrm{i}^{-39}=1 / \mathrm{i}^{39}=1 / \mathrm{i}^{4 \times 9+3}=1 /\left(1^{9} \times \mathrm{i}^{3}\right)=1 / \mathrm{i}^{3}=1 /(-\mathrm{i})\left[\mathrm{i}^{4}=1, \mathrm{i}^{3}=-\mathrm{I}\right.$ and $\left.\mathrm{i}^{2}=-1\right]$
Now, multiplying the numerator and denominator by i we get
$\mathrm{i}^{-39}=1 \mathrm{xi} /(-\mathrm{ix} \mathrm{i})$
$=\mathrm{i} / 1=\mathrm{i}$
Hence,
$\mathrm{i}^{-39}=0+\mathrm{i}$
4. $3(7+i 7)+i(7+i 7)$

Solution:
$3(7+i 7)+i(7+i 7)=21+i 21+i 7+i^{2} 7$
$=21+i 28-7\left[i^{2}=-1\right]$
$=14+i 28$
Hence,
$3(7+i 7)+i(7+i 7)=14+i 28$
5. $(1-i)-(-1+i 6)$

Solution:
$(1-i)-(-1+i 6)=1-i+1-i 6$
$=2-i 7$
Hence,
$(1-i)-(-1+i 6)=2-i 7$
6.
$\left(\frac{1}{5}+i \frac{2}{5}\right)-\left(4+i \frac{5}{2}\right)$
Solution:

$$
\begin{aligned}
& \left(\frac{1}{5}+i \frac{2}{5}\right)-\left(4+i \frac{5}{2}\right) \\
& =\frac{1}{5}+\frac{2}{5} i-4-\frac{5}{2} i \\
& =\left(\frac{1}{5}-4\right)+i\left(\frac{2}{5}-\frac{5}{2}\right) \\
& =\frac{-19}{5}+i\left(\frac{-21}{10}\right) \\
& =\frac{-19}{5}-\frac{21}{10} i
\end{aligned}
$$

Hence,

$$
\left(\frac{1}{5}+i \frac{2}{5}\right)-\left(4+i \frac{5}{2}\right)=\frac{-19}{5}-\frac{21}{10} i
$$

7. $\left[\left(\frac{1}{3}+i \frac{7}{3}\right)+\left(4+i \frac{1}{3}\right)\right]-\left(-\frac{4}{3}+i\right)$

Solution:

$$
\begin{aligned}
& {\left[\left(\frac{1}{3}+i \frac{7}{3}\right)+\left(4+i \frac{1}{3}\right)\right]-\left(\frac{-4}{3}+i\right)} \\
& =\frac{1}{3}+\frac{7}{3} i+4+\frac{1}{3} i+\frac{4}{3}-i \\
& =\left(\frac{1}{3}+4+\frac{4}{3}\right)+i\left(\frac{7}{3}+\frac{1}{3}-1\right) \\
& =\frac{17}{3}+i \frac{5}{3}
\end{aligned}
$$

Hence,

$$
\left[\left(\frac{1}{3}+i \frac{7}{3}\right)+\left(4+i \frac{1}{3}\right)\right]-\left(-\frac{4}{3}+i\right)=\frac{17}{3}+i \frac{5}{3}
$$

8. $(1-i)^{4}$

Solution:
$(1-i)^{4}=\left[(1-i)^{2}\right]^{2}$
$=\left[1+i^{2}-2 i\right]^{2}$
$=[1-1-2 i]^{2}\left[i^{2}=-1\right]$
$=(-2 \mathrm{i})^{2}$
$=4(-1)$
$=-4$
Hence, $(1-i)^{4}=-4+0 i$
9. $(1 / 3+3 i)^{3}$

Solution:

$$
\begin{array}{rlr}
\left(\frac{1}{3}+3 i\right)^{3} & =\left(\frac{1}{3}\right)^{3}+(3 i)^{3}+3\left(\frac{1}{3}\right)(3 i)\left(\frac{1}{3}+3 i\right) \\
& =\frac{1}{27}+27 i^{3}+3 i\left(\frac{1}{3}+3 i\right) \\
& =\frac{1}{27}+27(-i)+i+9 i^{2} & {\left[i^{3}=-i\right]} \\
& =\frac{1}{27}-27 i+i-9 & {\left[i^{2}=-1\right]} \\
& =\left(\frac{1}{27}-9\right)+i(-27+1) & \\
& =\frac{-242}{27}-26 i
\end{array}
$$

Hence, $(1 / 3+3 i)^{3}=-242 / 27-26 i$
10. $(-2-1 / 3 i)^{3}$

Solution:

$$
\begin{array}{rlr}
\left(-2-\frac{1}{3} i\right)^{3} & =(-1)^{3}\left(2+\frac{1}{3} i\right)^{3} \\
& =-\left[2^{3}+\left(\frac{i}{3}\right)^{3}+3(2)\left(\frac{i}{3}\right)\left(2+\frac{i}{3}\right)\right] \\
& =-\left[8+\frac{i^{3}}{27}+2 i\left(2+\frac{i}{3}\right)\right] & \\
& =-\left[8-\frac{i}{27}+4 i+\frac{2 i^{2}}{3}\right] & \\
& =-\left[8-\frac{i}{27}+4 i-\frac{2}{3}\right] & {\left[i^{2}=-i\right]} \\
& =-\left[\frac{22}{3}+\frac{107 i}{27}\right] & \\
& =-\frac{22}{3}-\frac{107}{27} i &
\end{array}
$$

Hence,
$(-2-1 / 3 i)^{3}=-22 / 3-107 / 27 i$
Find the multiplicative inverse of each of the complex numbers given in Exercises 11 to 13.

11. $4-3 \mathrm{i}$

Solution:

Let's consider $z=4-3 i$
Then,
$=4+3 i$ and
$|z|^{2}=4^{2}+(-3)^{2}=16+9=25$
Thus, the multiplicative inverse of $4-3 i$ is given by z^{-1}

$$
z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{4+3 i}{25}=\frac{4}{25}+\frac{3}{25} i
$$

12. $\sqrt{ } 5+3 i$

Solution:

Let's consider $z=\sqrt{ } 5+3 i$
Then, $\bar{z}=\sqrt{5}-3 i$ and $|z|^{2}=(\sqrt{5})^{2}+3^{2}=5+9=14$
$|z|^{2}=(\sqrt{5})^{2}+3^{2}=5+9=14$
Thus, the multiplicative inverse of $\sqrt{5}+3 i$ is given by z^{-1}
$z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{\sqrt{5}-3 i}{14}=\frac{\sqrt{5}}{14}-\frac{3 i}{14}$
13. -i

Solution:

Let's consider $z=-i$
Then, $\bar{z}=i$ and $|z|^{2}=1^{2}=1$
Thus, the multiplicative inverse of $-i$ is given by z^{-1}
$z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{i}{1}=i$
14. Express the following expression in the form of $a+i b:$
$\frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2} i)-(\sqrt{3}-i \sqrt{2})}$
Solution:

$$
\begin{aligned}
& \frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2} i)-(\sqrt{3}-i \sqrt{2})} \\
& =\frac{(3)^{2}-(i \sqrt{5})^{2}}{\sqrt{3}+\sqrt{2} i-\sqrt{3}+\sqrt{2} i} \\
& =\frac{9-5 i^{2}}{2 \sqrt{2} i} \\
& = \\
& \frac{9-5(-1)}{2 \sqrt{2} i} \\
& =\frac{9+5}{2 \sqrt{2} i} \times \frac{i}{i} \\
& =\frac{14 i}{2 \sqrt{2} i^{2}} \\
& =\frac{14 i}{2 \sqrt{2}(-1)} \\
& =\frac{-7 i}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
& =
\end{aligned}
$$

Hence,

$$
\frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2} i)-(\sqrt{3}-i \sqrt{2})}=0+\frac{-7 \sqrt{2} i}{2}
$$

EXERCISE 5.2

Find the modulus and the arguments of each of the complex numbers in Exercises 1 to 2.

1. $z=-1-i \sqrt{ } 3$

Solution:
Given,
$z=-1-i \sqrt{3}$
Let $r \cos \theta=-1$ and $r \sin \theta=-\sqrt{3}$
On squaring and adding, we get
$(r \cos \theta)^{2}+(r \sin \theta)^{2}=(-1)^{2}+(-\sqrt{3})^{2}$
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+3$
$r^{2}=4$ $\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]$
$r=\sqrt{4}=2$
[Conventionally, $r>0$]
Thus, modulus $=2$
So, we have
$2 \cos \theta=-1$ and $2 \sin \theta=-\sqrt{3}$
$\cos \theta=\frac{-1}{2}$ and $\sin \theta=\frac{-\sqrt{3}}{2}$
As the values of both $\sin \theta$ and $\cos \theta$ are negative, θ lies in III Quadrant,
Argument $=-\left(\pi-\frac{\pi}{3}\right)=\frac{-2 \pi}{3}$
Therefore, the modulus and argument of the complex number $-1-\sqrt{3}$ i are 2 and $\frac{-2 \pi}{3}$ respectively.
2. $z=-\sqrt{ } 3+i$

Solution:

Given,
$z=-\sqrt{3}+i$
Let $r \cos \theta=-\sqrt{3}$ and $r \sin \theta=1$
On squaring and adding, we get
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-\sqrt{3})^{2}+1^{2}$

$$
\begin{aligned}
& r^{2}=3+1=4 \\
& r=\sqrt{4}=2
\end{aligned}
$$

$$
\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]
$$

Thus, modulus $=2$
So,
$2 \cos \theta=-\sqrt{3}$ and $2 \sin \theta=1$
$\cos \theta=\frac{-\sqrt{3}}{2}$ and $\sin \theta=\frac{1}{2}$
$\therefore \theta=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}$
[As θ lies in the II quadrant]
Therefore, the modulus and argument of the complex number $-\sqrt{3}+i$ are 2 and $\frac{5 \pi}{6}$ respectively.
Convert each of the complex numbers given in Exercises 3 to 8 in the polar form:
3. 1 - i

Solution:

Given complex number,
$1-i$
Let $r \cos \theta=1$ and $r \sin \theta=-1$
On squaring and adding, we get
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=1^{2}+(-1)^{2}$
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1$
$r^{2}=2$
$r=\sqrt{2}=$ Modulus [Conventionally, $r>0$]
So,
$\sqrt{2} \cos \theta=1$ and $\sqrt{2} \sin \theta=-1$
$\cos \theta=\frac{1}{\sqrt{2}}$ and $\sin \theta=-\frac{1}{\sqrt{2}}$
$\therefore \theta=-\frac{\pi}{4}$
[As θ lies in the IV quadrant]
So,

$$
\begin{aligned}
1-i & =r \cos \theta+i r \sin \theta=\sqrt{2} \cos \left(-\frac{\pi}{4}\right)+i \sqrt{2} \sin \left(-\frac{\pi}{4}\right) \\
& =\sqrt{2}\left[\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right]
\end{aligned}
$$

Hence, this is the required polar form.
4. $-1+i$

Solution:

Given complex number,
$-1+i$
Let $r \cos \theta=-1$ and $r \sin \theta=1$
On squaring and adding, we get
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-1)^{2}+1^{2}$
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1$
$r^{2}=2$
$r=\sqrt{2}$
[Conventionally, $r>0$]
So,

$$
\begin{aligned}
& \sqrt{2} \cos \theta=-1 \text { and } \sqrt{2} \sin \theta=1 \\
& \cos \theta=-\frac{1}{\sqrt{2}} \text { and } \sin \theta=\frac{1}{\sqrt{2}}
\end{aligned}
$$

$\therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4} \quad$ [As θ lies in the II quadrant]
Hence. it can be written as

$$
\begin{aligned}
& \begin{aligned}
-1+i & =r \cos \theta+i r \sin \theta=\sqrt{2} \cos \frac{3 \pi}{4}+i \sqrt{2} \sin \frac{3 \pi}{4} \\
& =\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)
\end{aligned} \\
& \text { This is the required polar form. }
\end{aligned}
$$

5. -1 - i

Solution:

Given complex number,
$-1-i$
Let $r \cos \theta=-1$ and $r \sin \theta=-1$
On squaring and adding, we get
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-1)^{2}+(-1)^{2}$
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1$
$r^{2}=2$
$r=\sqrt{2} \quad$ [Conventionally, $r>0$]
So,
$\sqrt{2} \cos \theta=-1$ and $\sqrt{2} \sin \theta=-1$
$\Rightarrow \cos \theta=-\frac{1}{\sqrt{2}}$ and $\sin \theta=-\frac{1}{\sqrt{2}}$
$\therefore \theta=-\left(\pi-\frac{\pi}{4}\right)=-\frac{3 \pi}{4} \quad$ [As θ lies in the III quadrant]
Hence, it can be written as

$$
\begin{aligned}
& \begin{aligned}
-1-i & =r \cos \theta+i r \sin \theta=\sqrt{2} \cos \frac{-3 \pi}{4}+i \sqrt{2} \sin \frac{-3 \pi}{4} \\
& =\sqrt{2}\left(\cos \frac{-3 \pi}{4}+i \sin \frac{-3 \pi}{4}\right)
\end{aligned} \\
& \text { This is the required polar form. }
\end{aligned}
$$

6. -3

Solution:

Given complex number, -3
Let $r \cos \theta=-3$ and $r \sin \theta=0$
On squaring and adding, we get
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-3)^{2}$

$$
\begin{aligned}
& r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=9 \\
& r^{2}=9 \\
& r=\sqrt{9}=3 \quad[\text { Conventionally, } r>0]
\end{aligned}
$$

So,

$$
3 \cos \theta=-3 \text { and } 3 \sin \theta=0
$$

$\Rightarrow \cos \theta=-1$ and $\sin \theta=0$
$\therefore \theta=\pi$
Hence, it can be written as
$-3=r \cos \theta+i r \sin \theta=3 \cos \pi+\hat{B} \sin \pi=3(\cos \pi+i \sin \pi)$
This is the required polar form.
$7.3+i$
Solution:

Given complex number,
$\sqrt{3}+i$
Let $r \cos \theta=\sqrt{3}$ and $r \sin \theta=1$
On squaring and adding, we get
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(\sqrt{3})^{2}+1^{2}$
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=3+1$
$r^{2}=4$
$r=\sqrt{4}=2 \quad$ [Conventionally, $r>0$]
So,

$$
2 \cos \theta=\sqrt{3} \text { and } 2 \sin \theta=1
$$

$\Rightarrow \cos \theta=\frac{\sqrt{3}}{2}$ and $\sin \theta=\frac{1}{2}$
$\therefore \theta=\frac{\pi}{6}$
[As θ lies in the I quadrant]
Hence, it can be written as

$$
\begin{aligned}
& \begin{aligned}
\sqrt{3}+i & =r \cos \theta+i r \sin \theta=2 \cos \frac{\pi}{6}+i 2 \sin \frac{\pi}{6} \\
& =2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)
\end{aligned} \\
& \text { This is the required polar form. }
\end{aligned}
$$

8. i

Solution:
Given complex number, i
Let $r \cos \theta=0$ and $r \sin \theta=1$
On squaring and adding, we get
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=0^{2}+1^{2}$
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1$
$r^{2}=1$
$r=\sqrt{1}=1 \quad$ [Conventionally, $r>0$]
So,
$\cos \theta=0$ and $\sin \theta=1$
$\therefore \theta=\frac{\pi}{2}$
Hence, it can be written as
$i=r \cos \theta+i r \sin \theta=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}$
This is the required polar form.

EXERCISE 5.3

Solve each of the following equations:

1. $x^{2}+3=0$

Solution:

Given the quadratic equation,
$x^{2}+3=0$
On comparing it with $a x^{2}+b x+c=0$, we have
$a=1, b=0$, and $c=3$
So, the discriminant of the given equation will be
$\mathrm{D}=b^{2}-4 a c=0^{2}-4 \times 1 \times 3=-12$
Hence, the required solutions are

$$
\begin{gathered}
\mathrm{x}=\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{ \pm \sqrt{-12}}{2 \times 1}=\frac{ \pm \sqrt{12} i}{2} \\
\therefore \mathrm{x}=\frac{ \pm 2 \sqrt{3} i}{2}= \pm \sqrt{3} i
\end{gathered}
$$

2. $2 x^{2}+x+1=0$

Solution:

Given the quadratic equation,
$2 x^{2}+x+1=0$
On comparing it with $a x^{2}+b x+c=0$, we have
$a=2, b=1$, and $c=1$

So, the discriminant of the given equation will be
$\mathrm{D}=b^{2}-4 a c=1^{2}-4 \times 2 \times 1=1-8=-7$

Hence, the required solutions are
$\mathrm{x}=\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-1 \pm \sqrt{-7}}{2 \times 2}=\frac{-1 \pm \sqrt{7} i}{4} \quad[\sqrt{-1}=i]$

NCERT Solutions for Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations

3. $x^{2}+3 x+9=0$

Solution:

Given the quadratic equation,
$x^{2}+3 x+9=0$
On comparing it with $a x^{2}+b x+c=0$, we have
$a=1, b=3$, and $c=9$
So, the discriminant of the given equation will be
$\mathrm{D}=b^{2}-4 a c=3^{2}-4 \times 1 \times 9=9-36=-27$
Hence, the required solutions are
$x=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-3 \pm \sqrt{-27}}{2(1)}=\frac{-3 \pm 3 \sqrt{-3}}{2}=\frac{-3 \pm 3 \sqrt{3} i}{2} \quad[\sqrt{-1}=i]$
4. $-x^{2}+x-2=0$

Solution:

Given the quadratic equation,
$-x^{2}+x-2=0$
On comparing it with $a x^{2}+b x+c=0$, we have
$a=-1, b=1$, and $c=-2$
So, the discriminant of the given equation will be
$\mathrm{D}=b^{2}-4 a c=1^{2}-4 \times(-1) \times(-2)=1-8=-7$
Hence, the required solutions are
$\mathrm{x}=\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-1 \pm \sqrt{-7}}{2 \times(-1)}=\frac{-1 \pm \sqrt{7} i}{-2} \quad[\sqrt{-1}=i]$
5. $x^{2}+3 x+5=0$

Solution:

Given the quadratic equation,
$x^{2}+3 x+5=0$

On comparing it with $a x^{2}+b x+c=0$, we have
$a=1, b=3$, and $c=5$
So, the discriminant of the given equation will be
$\mathrm{D}=b^{2}-4 a c=3^{2}-4 \times 1 \times 5=9-20=-11$
Hence, the required solutions are
$\mathrm{x}=\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-3 \pm \sqrt{-11}}{2 \times 1}=\frac{-3 \pm \sqrt{11} i}{2}$
$[\sqrt{-1}=i]$
6. $x^{2}-x+2=0$

Solution:

Given the quadratic equation,
$x^{2}-x+2=0$
On comparing it with $a x^{2}+b x+c=0$, we have
$a=1, b=-1$, and $c=2$
So, the discriminant of the given equation is
$\mathrm{D}=b^{2}-4 a c=(-1)^{2}-4 \times 1 \times 2=1-8=-7$
Hence, the required solutions are
$\mathrm{x}=\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-1) \pm \sqrt{-7}}{2 \times 1}=\frac{1 \pm \sqrt{7} i}{2}$

$$
[\sqrt{-1}=i]
$$

7. $\sqrt{ } 2 x^{2}+x+\sqrt{ } 2=0$

Solution:

Given the quadratic equation,
$\sqrt{ } 2 x^{2}+x+\sqrt{ } 2=0$

On comparing it with $a x^{2}+b x+c=0$, we have
$a=\sqrt{ } 2, b=1$, and $c=\sqrt{ } 2$
So, the discriminant of the given equation is
$D=b^{2}-4 a c=(1)^{2}-4 \times \sqrt{ } 2 \times \sqrt{ } 2=1-8=-7$

Hence, the required solutions are

$$
\mathrm{x}=\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-1 \pm \sqrt{-7}}{2 \times \sqrt{2}}=\frac{-1 \pm \sqrt{7} i}{2 \sqrt{2}} \quad[\sqrt{-1}=i]
$$

8. $\sqrt{ } 3 x^{2}-\sqrt{ } 2 x+3 \sqrt{ } 3=0$

Solution:

Given the quadratic equation,
$\sqrt{ } 3 x^{2}-\sqrt{ } 2 x+3 \sqrt{ } 3=0$
On comparing it with $a x^{2}+b x+c=0$, we have
$a=\sqrt{ } 3, b=-\sqrt{ } 2$, and $c=3 \sqrt{ } 3$
So, the discriminant of the given equation is
$\mathrm{D}=b^{2}-4 a c=(-\sqrt{ } 2)^{2}-4 \times \sqrt{ } 3 \times 3 \sqrt{ } 3=2-36=-34$
Hence, the required solutions are
$\mathrm{x}=\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-\sqrt{2}) \pm \sqrt{-34}}{2 \times \sqrt{3}}=\frac{\sqrt{2} \pm \sqrt{34} i}{2 \sqrt{3}} \quad[\sqrt{-1}=i]$
9. $x^{2}+x+1 / \sqrt{ } 2=0$

Solution:

Given the quadratic equation,
$x^{2}+x+1 / \sqrt{ } 2=0$

It can be rewritten as,
$\sqrt{ } 2 x^{2}+\sqrt{ } 2 x+1=0$
On comparing it with $a x^{2}+b x+c=0$, we have
$a=\sqrt{ } 2, b=\sqrt{ } 2$, and $c=1$
So, the discriminant of the given equation is
$\mathrm{D}=b^{2}-4 a c=(\sqrt{ } 2)^{2}-4 \times \sqrt{ } 2 \times 1=2-4 \sqrt{ } 2=2(1-2 \sqrt{ } 2)$
Hence, the required solutions are

$$
\begin{aligned}
\mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{D}}}{2 \mathrm{a}} & =\frac{-\sqrt{2} \pm \sqrt{2-4 \sqrt{2}}}{2 \times \sqrt{2}}=\frac{-\sqrt{2} \pm \sqrt{2(1-2 \sqrt{2})}}{2 \sqrt{2}} \\
& =\left(\frac{-\sqrt{2} \pm \sqrt{2}(\sqrt{2 \sqrt{2}-1}) \mathrm{i}}{2 \sqrt{2}}\right) \quad[\sqrt{-1}=\mathrm{i}] \\
& =\frac{-1 \pm(\sqrt{2 \sqrt{2}-1}) \mathrm{i}}{2}
\end{aligned}
$$

10. $x^{2}+x / \sqrt{ } 2+1=0$

Solution:
Given the quadratic equation,
$x^{2}+x / \sqrt{ } 2+1=0$
It can be rewritten as,
$\sqrt{2} x^{2}+x+\sqrt{2}=0$

On comparing it with $a x^{2}+b x+c=0$, we have
$a=\sqrt{ } 2, b=1$, and $c=\sqrt{ } 2$
So, the discriminant of the given equation is
$\mathrm{D}=b^{2}-4 a c=(1)^{2}-4 \times \sqrt{2} \times \sqrt{2}=1-8=-7$
Hence, the required solutions are
$\mathrm{x}=\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-1 \pm \sqrt{-7}}{2 \sqrt{2}}=\frac{-1 \pm \sqrt{7} i}{2 \sqrt{2}} \quad[\sqrt{-1}=i]$

MISCELLANEOUS EXERCISE

1.

Evaluate: $\left[i^{18}+\left(\frac{1}{i}\right)^{25}\right]^{3}$

Solution:

$$
\begin{aligned}
& {\left[i^{18}+\left(\frac{1}{i}\right)^{25}\right]^{3}} \\
& =\left[i^{4 \times 4+2}+\frac{1}{i^{46+1}}\right]^{3} \\
& =\left[\left(i^{4}\right)^{4} \cdot i^{2}+\frac{1}{\left(i^{4}\right)^{6} \cdot i}\right]^{3} \\
& =\left[i^{2}+\frac{1}{i}\right]^{3} \\
& =\left[-1+\frac{1}{i} \times \frac{i}{i}\right]^{3} \\
& =\left[-1+\frac{i}{i^{2}}\right]^{3} \\
& =[-1-i]^{3} \\
& =(-1)^{3}[1+i]^{3} \\
& =-\left[1^{3}+i^{3}+3 \cdot 1 \cdot i(1+i)\right] \\
& =-\left[1+i^{3}+3 i+3 i^{2}\right] \\
& =-[1-i+3 i-3] \\
& =-[-2+2 i] \\
& =2-2 i
\end{aligned}
$$

2. For any two complex numbers z_{1} and z_{2}, prove that
$\operatorname{Re}\left(\mathbf{z}_{1} \mathbf{z}_{2}\right)=\operatorname{Re}_{\mathbf{z}_{1}} \operatorname{Re}_{\mathbf{z}_{2}}-\operatorname{Im} \mathbf{z}_{1} \operatorname{Im} \mathbf{z}_{2}$
Solution:

Lets's assume $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ as two complex numbers
Product of these complex numbers, $z_{1} z_{2}$

$$
\begin{array}{rlr}
z_{1} z_{2} & =\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right) & \\
& =x_{1}\left(x_{2}+i y_{2}\right)+i y_{1}\left(x_{2}+i y_{2}\right) & \\
& =x_{1} x_{2}+i x_{1} y_{2}+i y_{1} x_{2}+i^{2} y_{1} y_{2} & \\
& =x_{1} x_{2}+i x_{1} y_{2}+i y_{1} x_{2}-y_{1} y_{2} & {\left[i^{2}=-1\right]} \\
& =\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+y_{1} x_{2}\right) &
\end{array}
$$

Now,

$$
\begin{aligned}
\operatorname{Re}\left(z_{1} z_{2}\right)= & x_{1} x_{2}-y_{1} y_{2} \\
\Rightarrow & \operatorname{Re}\left(z_{1} z_{2}\right)=\operatorname{Re} z_{1} \operatorname{Re} z_{2}-\operatorname{Im} z_{1} \operatorname{Im} z_{2}
\end{aligned}
$$

Hence, proved.
3. Reduce to the standard form.

$$
\left(\frac{1}{1-4 i}-\frac{2}{1+i}\right)\left(\frac{3-4 i}{5+i}\right)
$$

Solution:

$$
\begin{aligned}
& \left(\frac{1}{1-4 i}-\frac{2}{1+i}\right)\left(\frac{3-4 i}{5+i}\right)=\left[\frac{(1+i)-2(1-4 i)}{(1-4 i)(1+i)}\right]\left[\frac{3-4 i}{5+i}\right] \\
& =\left[\frac{1+i-2+8 i}{1+i-4 i-4 i^{2}}\right]\left[\frac{3-4 i}{5+i}\right]=\left[\frac{-1+9 i}{5-3 i}\right]\left[\frac{3-4 i}{5+i}\right] \\
& =\left[\frac{-3+4 i+27 i-36 i^{2}}{25+5 i-15 i-3 i^{2}}\right]=\frac{33+31 i}{28-10 i}=\frac{33+31 i}{2(14-5 i)} \\
& =\frac{(33+31 i)}{2(14-5 i)} \times \frac{(14+5 i)}{(14+5 i)} \quad[\text { On multiplying numerator and denominator by }(14+5 i)] \\
& =\frac{462+165 i+434 i+155 i^{2}}{2\left[(14)^{2}-(5 i)^{2}\right]}=\frac{307+599 i}{2\left(196-25 i^{2}\right)} \\
& =\frac{307+599 i}{2(221)}=\frac{307+599 i}{442}=\frac{307}{442}+\frac{599 i}{442}
\end{aligned}
$$

Hence, this is the required standard form.
4.

If $x-i y=\sqrt{\frac{a-i b}{c-i d}}$ prove that $\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$.

Solution:

Given,

$$
\begin{aligned}
x-i y & =\sqrt{\frac{a-i b}{c-i d}} \\
& =\sqrt{\frac{a-i b}{c-i d} \times \frac{c+i d}{c+i d}}[\text { On multiplying numerator and deno min ator by }(c+i d)] \\
& =\sqrt{\frac{(a c+b d)+i(a d-b c)}{c^{2}+d^{2}}}
\end{aligned}
$$

So, $(x-i y)^{2}=\frac{(a c+b d)+i(a d-b c)}{c^{2}+d^{2}}$
$x^{2}-y^{2}-2 i x y=\frac{(a c+b d)+i(a d-b c)}{c^{2}+d^{2}}$
On comparing real and imaginary parts, we get

$$
\begin{equation*}
x^{2}-y^{2}=\frac{a c+b d}{c^{2}+d^{2}},-2 x y=\frac{a d-b c}{c^{2}+d^{2}} \tag{1}
\end{equation*}
$$

$\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)^{2}+4 x^{2} y^{2}$
$=\left(\frac{a c+b d}{c^{2}+d^{2}}\right)^{2}+\left(\frac{a d-b c}{c^{2}+d^{2}}\right)^{2} \quad[U \sin g(1)]$
$=\frac{a^{2} c^{2}+b^{2} d^{2}+2 a c b d+a^{2} d^{2}+b^{2} c^{2}-2 a d b c}{\left(c^{2}+d^{2}\right)^{2}}$
$=\frac{a^{2} c^{2}+b^{2} d^{2}+a^{2} d^{2}+b^{2} c^{2}}{\left(c^{2}+d^{2}\right)^{2}}$
$=\frac{\mathrm{a}^{2}\left(\mathrm{c}^{2}+\mathrm{d}^{2}\right)+\mathrm{b}^{2}\left(\mathrm{c}^{2}+\mathrm{d}^{2}\right)}{\left(\mathrm{c}^{2}+\mathrm{d}^{2}\right)^{2}}$
$=\frac{\left(c^{2}+d^{2}\right)\left(a^{2}+b^{2}\right)}{\left(c^{2}+d^{2}\right)^{2}}$
$=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$

- Hence Proved

5. Convert the following into the polar form:
(i) $\frac{1+7 i}{(2-i)^{2}}$,(ii) $\frac{1+3 i}{1-2 i}$

Solution:
(i) Here, $z=\frac{1+7 i}{(2-i)^{2}}$
$=\frac{1+7 i}{(2-i)^{2}}=\frac{1+7 i}{4+i^{2}-4 i}=\frac{1+7 i}{4-1-4 i}$
$=\frac{1+7 i}{3-4 i} \times \frac{3+4 i}{3+4 i}=\frac{3+4 i+21 i+28 i^{2}}{3^{2}+4^{2}}$ [Multiplying by its conjugate in the numerator
$=\frac{3+4 i+21 i-28}{3^{2}+4^{2}}=\frac{-25+25 i}{25}$
$=-1+i$
Let $r \cos \theta=-1$ and $r \sin \theta=1$
On squaring and adding, we get

$$
\begin{array}{lr}
r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1 & \\
r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=2 & \\
r^{2}=2 & {\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]} \\
r=\sqrt{2} & {[\text { Conventionally, } r>0]}
\end{array}
$$

So,
$\sqrt{2} \cos \theta=-1$ and $\sqrt{2} \sin \theta=1$
$\Rightarrow \cos \theta=\frac{-1}{\sqrt{2}}$ and $\sin \theta=\frac{1}{\sqrt{2}}$
$\therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4} \quad$ [As θ lies in II quadrant]
Expressing as, $z=r \cos \theta+i r \sin \theta$
$=\sqrt{2} \cos \frac{3 \pi}{4}+i \sqrt{2} \sin \frac{3 \pi}{4}=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$
Therefore, this is the required polar form.
(ii) Let, $z=\frac{1+3 i}{1-2 i}$

$$
\begin{aligned}
& =\frac{1+3 i}{1-2 i} \times \frac{1+2 i}{1+2 i} \\
& =\frac{1+2 i+3 i-6}{1+4} \\
& =\frac{-5+5 i}{5}=-1+i
\end{aligned}
$$

Now,
Let $r \cos \theta=-1$ and $r \sin \theta=1$
On squaring and adding, we get

$$
\begin{aligned}
& r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1 \\
& r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=2 \\
& r^{2}=2 \quad\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right] \\
& \Rightarrow r=\sqrt{2} \quad[\text { Conventionally, } r>0] \\
& \therefore \sqrt{2} \cos \theta=-1 \text { and } \sqrt{2} \sin \theta=1 \\
& \cos \theta=\frac{-1}{\sqrt{2}} \text { and } \sin \theta=\frac{1}{\sqrt{2}} \\
& \therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4} \quad[\text { As } \theta \text { lies in II quadrant] }
\end{aligned}
$$

Expressing as, $z=r \cos \theta+i r \sin \theta$

$$
\mathrm{z}=\sqrt{2} \cos \frac{3 \pi}{4}+i \sqrt{2} \sin \frac{3 \pi}{4}=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)
$$

Therefore, this is the required polar form.
Solve each of the equations in Exercises 6 to 9.
6. $3 x^{2}-4 x+20 / 3=0$

Solution:

Given the quadratic equation, $3 x^{2}-4 x+20 / 3=0$
It can be re-written as: $9 \mathrm{x}^{2}-12 \mathrm{x}+20=0$
On comparing it with $a x^{2}+b x+c=0$, we get
$a=9, b=-12$, and $c=20$
So, the discriminant of the given equation will be
$\mathrm{D}=b^{2}-4 a c=(-12)^{2}-4 \times 9 \times 20=144-720=-576$
Hence, the required solutions are

$$
\begin{aligned}
\mathrm{x} & =\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-12) \pm \sqrt{-576}}{2 \times 9}=\frac{12 \pm \sqrt{576} i}{18} \\
& =\frac{12 \pm 24 i}{18}=\frac{6(2 \pm 4 i)}{18}=\frac{2 \pm 4 i}{3}=\frac{2}{3} \pm \frac{4}{3} i
\end{aligned}
$$

7. $x^{2}-2 x+3 / 2=0$

Solution:

Given the quadratic equation, $\mathrm{x}^{2}-2 \mathrm{x}+3 / 2=0$
It can be re-written as $2 x^{2}-4 x+3=0$
On comparing it with $a x^{2}+b x+c=0$, we get
$a=2, b=-4$, and $c=3$
So, the discriminant of the given equation will be
$\mathrm{D}=b^{2}-4 a c=(-4)^{2}-4 \times 2 \times 3=16-24=-8$
Hence, the required solutions are

$$
\begin{aligned}
\mathrm{x} & =\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-4) \pm \sqrt{-8}}{2 \times 2}=\frac{4 \pm 2 \sqrt{2} i}{4} \quad[\sqrt{-1}=i] \\
& =\frac{2 \pm \sqrt{2} i}{2}=1 \pm \frac{\sqrt{2}}{2} i
\end{aligned}
$$

8. $27 \mathrm{x}^{2}-10 \mathrm{x}+1=0$

Solution:

Given the quadratic equation, $27 x^{2}-10 x+1=0$
On comparing it with $a x^{2}+b x+c=0$, we get
$a=27, b=-10$, and $c=1$
So, the discriminant of the given equation will be
$\mathrm{D}=b^{2}-4 a c=(-10)^{2}-4 \times 27 \times 1=100-108=-8$
Hence, the required solutions are

$$
\begin{aligned}
\mathrm{x} & =\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-10) \pm \sqrt{-8}}{2 \times 27}=\frac{10 \pm 2 \sqrt{2} i}{54} \\
& =\frac{5 \pm \sqrt{2} i}{27}=\frac{5}{27} \pm \frac{\sqrt{2}}{27} i
\end{aligned}
$$

9. $21 x^{2}-28 x+10=0$

Solution:

Given the quadratic equation, $21 x^{2}-28 x+10=0$
On comparing it with $a x^{2}+b x+c=0$, we have
$a=21, b=-28$, and $c=10$
So, the discriminant of the given equation will be
$\mathrm{D}=b^{2}-4 a c=(-28)^{2}-4 \times 21 \times 10=784-840=-56$
Hence, the required solutions are

$$
\begin{aligned}
\mathrm{x} & =\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-28) \pm \sqrt{-56}}{2 \times 21}=\frac{28 \pm \sqrt{56} i}{42} \\
& =\frac{28 \pm 2 \sqrt{14} i}{42}=\frac{28}{42} \pm \frac{2 \sqrt{14}}{42} i=\frac{2}{3} \pm \frac{\sqrt{14}}{21} i
\end{aligned}
$$

10. If $\mathrm{z}_{1}=2-i, \mathrm{z}_{2}=1+i$, find

$$
\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|
$$

Solution:

Given, $\mathrm{z}_{1}=2-i, \mathrm{z}_{2}=1+i$

So,

$$
\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|=\left|\frac{(2-i)+(1+i)+1}{(2-i)-(1+i)+1}\right|
$$

$$
=\left|\frac{4}{2-2 i}\right|=\left|\frac{4}{2(1-i)}\right|
$$

$$
=\left|\frac{2}{1-i} \times \frac{1+i}{1+i}\right|=\left|\frac{2(1+i)}{1^{2}-i^{2}}\right|
$$

$$
=\left|\frac{2(1+i)}{1+1}\right| \quad\left[i^{2}=-1\right]
$$

$$
=\left|\frac{2(1+i)}{2}\right|
$$

$$
=|1+i|=\sqrt{1^{2}+1^{2}}=\sqrt{2}
$$

Hence, the value of $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|$ is $\sqrt{2}$.
11.

If $a+i b=\frac{(x+i)^{2}}{2 x^{2}+1}$, prove that $a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}$.
Solution:

Given,
$a+i b=\frac{(x+i)^{2}}{2 x^{2}+1}$

$$
\begin{aligned}
& =\frac{x^{2}+i^{2}+2 x i}{2 x^{2}+1} \\
& =\frac{x^{2}-1+i 2 x}{2 x^{2}+1} \\
& =\frac{x^{2}-1}{2 x^{2}+1}+i\left(\frac{2 x}{2 x^{2}+1}\right)
\end{aligned}
$$

Comparing the real and imaginary parts, we have

$$
\begin{aligned}
& a=\frac{x^{2}-1}{2 x^{2}+1} \text { and } b=\frac{2 x}{2 x^{2}+1} \\
& \begin{aligned}
\therefore a^{2}+b^{2} & =\left(\frac{x^{2}-1}{2 x^{2}+1}\right)^{2}+\left(\frac{2 x}{2 x^{2}+1}\right)^{2} \\
& =\frac{x^{4}+1-2 x^{2}+4 x^{2}}{(2 x+1)^{2}} \\
& =\frac{x^{4}+1+2 x^{2}}{\left(2 x^{2}+1\right)^{2}} \\
& =\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}
\end{aligned}
\end{aligned}
$$

Hence proved,

$$
a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}
$$

12. Let $\mathrm{z}_{1}=2-i, \mathrm{z}_{2}=-2+i$. Find
(i) $\operatorname{Re}\left(\frac{z_{1} z_{2}}{\bar{z}_{1}}\right)$,(ii) $\operatorname{Im}\left(\frac{1}{z_{1} \bar{z}_{1}}\right)$

Solution:

Given,
$z_{1}=2-i, z_{2}=-2+i$
(i) $\mathrm{z}_{1} \mathrm{z}_{2}=(2-\mathrm{i})(-2+\mathrm{i})=-4+2 \mathrm{i}+2 \mathrm{i}-\mathrm{i}^{2}=-4+4 \mathrm{i}-(-1)=-3+4 \mathrm{i}$
$\bar{z}_{1}=2+i$
$\therefore \frac{z_{1} z_{2}}{\bar{z}_{1}}=\frac{-3+4 i}{2+i}$
On multiplying numerator and denominator by $(2-i)$, we get

$$
\begin{aligned}
\frac{z_{1} z_{2}}{\bar{z}_{1}} & =\frac{(-3+4 i)(2-i)}{(2+i)(2-i)}=\frac{-6+3 i+8 i-4 i^{2}}{2^{2}+1^{2}}=\frac{-6+11 i-4(-1)}{2^{2}+1^{2}} \\
& =\frac{-2+1 l i}{5}=\frac{-2}{5}+\frac{11}{5} i
\end{aligned}
$$

Comparing the real parts, we have

$$
\operatorname{Re}\left(\frac{z_{1} z_{2}}{\bar{z}_{1}}\right)=\frac{-2}{5}
$$

(ii) $\frac{1}{\mathrm{z}_{1} \overline{\mathrm{z}}_{1}}=\frac{1}{(2-\mathrm{i})(2+\mathrm{i})}=\frac{1}{(2)^{2}+(1)^{2}}=\frac{1}{5}$

On comparing the imaginary part, we get

$$
\operatorname{Im}\left(\frac{1}{z_{1} \bar{z}_{1}}\right)=0
$$

13. Find the modulus and argument of the complex number.
$\frac{1+2 i}{1-3 i}$
Solution:

Let $z=\frac{1+2 i}{1-3 i}$, then
$z=\frac{1+2 i}{1-3 i} \times \frac{1+3 i}{1+3 i}=\frac{1+3 i+2 i+6 i^{2}}{1^{2}+3^{2}}=\frac{1+5 i+6(-1)}{1+9}$
$=\frac{-5+5 i}{10}=\frac{-5}{10}+\frac{5 i}{10}=\frac{-1}{2}+\frac{1}{2} i$
Let $z=r \cos \theta+i r \sin \theta$
So, $r \cos \theta=\frac{-1}{2}$ and $r \sin \theta=\frac{1}{2}$
On squaring and adding, we get

$$
\begin{aligned}
& r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\left(\frac{-1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2} \\
& r^{2}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \quad[\text { Conventionally, } r>0] \\
& r=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \frac{1}{\sqrt{2}} \cos \theta=\frac{-1}{2} \text { and } \frac{1}{\sqrt{2}} \sin \theta=\frac{1}{2} \\
\Rightarrow & \cos \theta=\frac{-1}{\sqrt{2}} \text { and } \sin \theta=\frac{1}{\sqrt{2}}
\end{aligned}
$$

$$
\therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}
$$

[As θ lies in the II quadrant]
14. Find the real numbers x and y if $(x-i y)(3+5 i)$ is the conjugate of $-6-24 i$.

Solution:
Let's assume $\mathrm{z}=(x-i y)(3+5 i)$
$z=3 x+5 x i-3 y i-5 y i^{2}=3 x+5 x i-3 y i+5 y=(3 x+5 y)+i(5 x-3 y)$
$\therefore \bar{z}=(3 x+5 y)-i(5 x-3 y)$
Also given, $\bar{z}=-6-24 i$
And,
$(3 \mathrm{x}+5 \mathrm{y})-i(5 \mathrm{x}-3 \mathrm{y})=-6-24 i$
On equating real and imaginary parts, we have
$3 x+5 y=-6$ \qquad
$5 x-3 y=24 \ldots \ldots$ (ii)

Performing (i) x $3+$ (ii) x 5 , we get
$(9 x+15 y)+(25 x-15 y)=-18+120$
$34 x=102$
$x=102 / 34=3$
Putting the value of x in equation (i), we get
$3(3)+5 y=-6$
$5 y=-6-9=-15$
$y=-3$
Therefore, the values of x and y are 3 and -3 , respectively.
15. Find the modulus of
$\frac{1+i}{1-i}-\frac{1-i}{1+i}$
Solution:
$\frac{1+i}{1-i}-\frac{1-i}{1+i}=\frac{(1+i)^{2}-(1-i)^{2}}{(1-i)(1+i)}$

$$
\begin{gathered}
=\frac{1+i^{2}+2 i-1-i^{2}+2 i}{1^{2}+1^{2}} \\
=\frac{4 i}{2}=2 i \\
\therefore\left|\frac{1+i}{1-i}-\frac{1-i}{1+i}\right|=|2 i|=\sqrt{2^{2}}=2
\end{gathered}
$$

16. If $(x+i y)^{3}=u+i v$, then show that
$\frac{u}{x}+\frac{v}{y}=4\left(x^{2}-y^{2}\right)$
Solution:

Given,
$(x+i y)^{3}=u+i v$
$x^{3}+(i y)^{3}+3 \cdot x \cdot i y(x+i y)=u+i v$
$x^{3}+i^{3} y^{3}+3 x^{2} y i+3 x y^{2} i^{2}=u+i v$
$x^{3}-i y^{3}+3 x^{2} y i-3 x y^{2}=u+i v$
$\left(x^{3}-3 x y^{2}\right)+i\left(3 x^{2} y-y^{3}\right)=u+i v$
On equating real and imaginary parts, we get

$$
\begin{aligned}
& u=x^{3}-3 x y^{2}, v=3 x^{2} y-y^{3} \\
& \begin{aligned}
\frac{u}{x}+\frac{v}{y} & =\frac{x^{3}-3 x y^{2}}{x}+\frac{3 x^{2} y-y^{3}}{y} \\
& =\frac{x\left(x^{2}-3 y^{2}\right)}{x}+\frac{y\left(3 x^{2}-y^{2}\right)}{y} \\
& =x^{2}-3 y^{2}+3 x^{2}-y^{2} \\
& =4 x^{2}-4 y^{2} \\
& =4\left(x^{2}-y^{2}\right) \\
\therefore \frac{u}{x}+\frac{v}{y} & =4\left(x^{2}-y^{2}\right)
\end{aligned}
\end{aligned}
$$

Hence proved.
17. If α and β are different complex numbers with $|\beta|=1$, then find
$\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$

Solution:

Let $a=a+i b$ and $\beta=x+i y$
Given, $|\beta|=1$
So, $\sqrt{x^{2}+y^{2}}=1$
$\Rightarrow x^{2}+y^{2}=1$
$\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|=\left|\frac{(x+i y)-(a+i b)}{1-(a-i b)(x+i y)}\right|$
$=\left|\frac{(x-a)+i(y-b)}{1-(a x+a i y-i b x+b y)}\right|$
$=\left|\frac{(x-a)+i(y-b)}{(1-a x-b y)+i(b x-a y)}\right|$
$=\frac{|(x-a)+i(y-b)|}{|(1-a x-b y)+i(b x-a y)|}$
$\left[\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}\right]$

$$
=\frac{\sqrt{(x-a)^{2}+(y-b)^{2}}}{\sqrt{(1-a x-b y)^{2}+(b x-a y)^{2}}}
$$

$$
=\frac{\sqrt{x^{2}+a^{2}-2 a x+y^{2}+b^{2}-2 b y}}{\sqrt{1+a^{2} x^{2}+b^{2} y^{2}-2 a x+2 a b x y-2 b y+b^{2} x^{2}+a^{2} y^{2}-2 a b x y}}
$$

$$
=\frac{\sqrt{\left(x^{2}+y^{2}\right)+a^{2}+b^{2}-2 a x-2 b y}}{\sqrt{1+a^{2}\left(x^{2}+y^{2}\right)+b^{2}\left(y^{2}+x^{2}\right)-2 a x-2 b y}}
$$

$=\frac{\sqrt{\left(x^{2}+y^{2}\right)+a^{2}+b^{2}-2 a x-2 b y}}{\sqrt{1+a^{2}\left(x^{2}+y^{2}\right)+b^{2}\left(y^{2}+x^{2}\right)-2 a x-2 b y}}$
$=\frac{\sqrt{1+a^{2}+b^{2}-2 a x-2 b y}}{\sqrt{1+a^{2}+b^{2}-2 a x-2 b y}}$
$[U \sin g(1)]$
$=1$
$\therefore\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|=1$
18. Find the number of non-zero integral solutions of the equation $|1-i|^{x}=2^{x}$

Solution:

$$
\begin{aligned}
& |1-i|^{x}=2^{x} \\
& \left(\sqrt{1^{2}+(-1)^{2}}\right)^{x}=2^{x} \\
& (\sqrt{2})^{x}=2^{x} \\
& 2^{\frac{x}{2}}=2^{x} \\
& \frac{x}{2}=x \\
& x=2 x \\
& 2 x-x=0 \\
& x=0
\end{aligned}
$$

Therefore, 0 is the only integral solution of the given equation.
Hence, the number of non-zero integral solutions of the given equation is 0 .
19. If $(a+i b)(c+i d)(e+i f)(g+i h)=\mathbf{A}+i \mathrm{~B}$, then show that
$\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=\mathbf{A}^{2}+\mathbf{B}^{2}$

Solution:

Given,

$$
\begin{aligned}
& (a+i b)(c+i d)(e+i f)(g+i h)=\mathrm{A}+i \mathrm{~B} \\
& \therefore|(a+i b)(c+i d)(e+i f)(g+i h)|=|\mathrm{A}+i \mathrm{~B}| \\
& \Rightarrow|(a+i b)| \times(c+i d)\left|\times|(e+i f)| \times|(g+i h)|=|\mathrm{A}+i \mathrm{~B}| \quad \quad\left[\left|z_{1}=_{2}\right|=\left|z_{1}\right| \mid=\right.\right. \\
& \sqrt{a^{2}+b^{2}} \times \sqrt{c^{2}+d^{2}} \times \sqrt{e^{2}+f^{2}} \times \sqrt{g^{2}+h^{2}}=\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}}
\end{aligned}
$$

On squaring both sides, we get
$\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=A^{2}+B^{2}$
$\left(\frac{1+i}{1-i}\right)^{m}=1$
Hence proved.
$\left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^{m}=1$
$\left(\frac{(1+i)^{2}}{1^{2}+1^{2}}\right)^{m}=1$
$\left(\frac{1+i}{1-i}\right)^{m}=1$
Solution:
$\left(\frac{1^{2}+i^{2}+2 i}{2}\right)^{m \prime}=1$
$\left(\frac{1-1+2 i}{2}\right)^{m}=1$
$\left(\frac{2 i}{2}\right)^{m}=1$
https://byjus.com
$i^{\prime \prime \prime}=1$
Hence, $m=4 k$, where k is some integer.

Thus, the least positive integer is 1 .
Therefore, the least positive integral value of m is $4(=4 \times 1)$.

