EXERCISE 7.3

1. How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?

Solution:

Total number of digits possible for choosing $=9$

Number of places for which a digit has to be taken $=3$
As there is no repetition allowed,

$$
\Rightarrow \text { No. of permutations }={ }_{3}^{9} \mathrm{P}=\frac{9!}{(9-3)!}=\frac{9!}{6!}=\frac{9 \times 8 \times 7 \times 6!}{6!}=504 .
$$

2. How many 4-digit numbers are there with no digit repeated?

Solution:

To find the four-digit number (digits do not repeat),
We will have 4 places where 4-digits are to be put.
So, at the thousand's place $=$ There are 9 ways as 0 cannot be at the thousand's place $=9$ ways
At the hundredth's place $=$ There are 9 digits to be filled as 1 digit is already taken $=9$ ways
At the ten's place $=$ There are now 8 digits to be filled as 2 digits are already taken $=8$ ways
At unit's place $=$ There are 7 digits that can be filled $=7$ ways
The total number of ways to fill the four places $=9 \times 9 \times 8 \times 7=4536$ ways
So, a total of 4536 four-digit numbers can be there with no digits repeated.
3. How many 3 -digit even numbers can be made using the digits $1,2,3,4,6,7$, if no digit is repeated?

Solution:

An even number means that the last digit should be even.
The number of possible digits at one's place $=3(2,4$ and 6$)$
\Rightarrow Number of permutations=
${ }_{1}^{3} \mathrm{P}=\frac{3!}{(3-1)!}=3$
One of the digits is taken at one's place; the number of possible digits available $=5$
\Rightarrow Number of permutations=
${ }_{2}^{5} \mathrm{P}=\frac{5!}{(5-2)!}=\frac{5 \times 4 \times 3!}{3!}=20$.
Therefore, the total number of permutations $=3 \times 20=60$
4. Find the number of 4 -digit numbers that can be formed using the digits $1,2,3,4,5$, if no digit is repeated. How many of these will be even?

Solution:

Total number of digits possible for choosing $=5$
Number of places for which a digit has to be taken $=4$
As there is no repetition allowed,
\Rightarrow Number of permutations $=$
${ }_{4}^{5} \mathrm{P}=\frac{5!}{(5-4)!}=\frac{5!}{1!}=120$.
The number will be even when 2 and 4 are in one's place.
The possibility of $(2,4)$ at one's place $=2 / 5=0.4$
The total number of even numbers $=120 \times 0.4=48$
5. From a committee of 8 persons, in how many ways can we choose a chairman and a vice chairman, assuming one person cannot hold more than one position?

Solution:
Total number of people in committee $=8$
Number of positions to be filled $=2$
\Rightarrow Number of permutations $=$
${ }_{2}^{8} \mathrm{P}=\frac{8!}{(8-2)!}=\frac{8!}{6!}=56$.
6. Find n if ${ }^{n-1} P_{3}:{ }^{n} P_{3}=1: 9$.

Solution:

Given equation can be written as
$\frac{\mathrm{n}-\frac{1}{3} \mathrm{p}}{{ }_{4}^{\mathrm{n}} \mathrm{p}}=\frac{1}{9}$
By substituting the values we get
$\Rightarrow \frac{\frac{(n-1)!}{(n-4)!}}{\frac{n!}{(n-4)!}}=\frac{1}{9}$
On simplification
$\Rightarrow \frac{(\mathrm{n}-1)!}{\mathrm{n}!}=\frac{1}{9}$
$\Rightarrow \frac{1}{\mathrm{n}}=\frac{1}{9}$
$\Rightarrow \mathrm{n}=9$.
$\Rightarrow \frac{(n-1)!}{n(n-1)!}=\frac{1}{9}$
$\Rightarrow \frac{1}{\mathrm{n}}=\frac{1}{9}$
$\Rightarrow \mathrm{n}=9$.
7. Find r if
(i) $)^{5} \mathbf{P}_{\mathrm{r}}=\mathbf{2}^{6} \mathrm{P}_{\mathrm{r}-1}$
(ii) ${ }^{5} \mathbf{P}_{\mathrm{r}}={ }^{6} \mathbf{P}_{\mathrm{r}-1}$

Solution:
(i) ${ }_{\mathrm{r}}^{5} \mathrm{P}=2{ }_{\mathrm{r}-1}{ }_{-1}^{6} \mathrm{P}$

Substituting the values we get
$\Rightarrow \frac{5!}{(5-r)!}=2 \frac{6!}{(7-r)!}$
The above equation can be written as
$\Rightarrow \frac{(7-r)!}{(5-r)!}=2 \frac{6!}{5!}$
On simplifying we get
$\Rightarrow(7-r)(6-r)=2(6)$
$\Rightarrow 42-13 r+r^{2}=12$
$\Rightarrow \mathrm{r}^{2}-13 \mathrm{r}+30=0$
$\Rightarrow r^{2}-10 r-3 r+30=0$
$\Rightarrow r(r-10)-3(r-10)=0$
$\Rightarrow(r-3)(r-10)=0$
$\mathrm{r}=3$ or $\mathrm{r}=10$
But $r=10$ is rejected, as in ${ }_{r}^{5} \mathrm{P}, r$ cannot be greater than 5 .
Therefore, $r=3$.
(ii) ${ }_{\mathrm{r}}^{5} \mathrm{P}={ }_{\mathrm{r}-1}^{6} \mathrm{P}$

The above equation can be written as

$$
\begin{aligned}
& \Rightarrow \frac{5!}{(5-r)!}=\frac{6!}{(7-r)!} \\
& \Rightarrow \frac{(7-r)!}{(5-r)!}=\frac{6!}{5!} \\
& \Rightarrow(7-r)(6-r)=6 \\
& \Rightarrow 42-13 r+r^{2}=6 \\
& \Rightarrow r^{2}-13 r+36=0 \\
& \Rightarrow r^{2}-9 r-4 r+36=0 \\
& \Rightarrow r(r-9)-4(r-9)=0 \\
& \Rightarrow(r-4)(r-9)=0 \\
& r=4 \text { or } r=9
\end{aligned}
$$

But $r=9$ is rejected, as in ${ }_{r}^{5} \mathrm{P}$, r cannot be greater than 5 .
Therefore, $\mathrm{r}=4$.
8. How many words, with or without meaning, can be formed using all the letters of the word EQUATION, using each letter exactly once?

Solution:

Total number of different letters in EQUATION $=8$
Number of letters to be used to form a word $=8$
\Rightarrow Number of permutations $=$
${ }_{8}^{8} \mathrm{P}=\frac{8!}{(8-8)!}=\frac{8!}{0!}=40320$.
9. How many words, with or without meaning, can be made from the letters of the word MONDAY, assuming that no letter is repeated, if.
(i) 4 letters are used at a time,
(ii) All letters are used at a time,
(iii) All letters are used, but the first letter is a vowel.

Solution:
(i) Number of letters to be used $=4$
\Rightarrow Number of permutations $=$
${ }_{4}^{6} \mathrm{P}=\frac{6!}{(6-4)!}=\frac{6!}{2!}=360$.
(ii) Number of letters to be used $=6$
\Rightarrow Number of permutations $=$
${ }_{6}^{6} P=\frac{6!}{(6-6)!}=\frac{6!}{0!}=720$.
(iii) Number of vowels in MONDAY $=2(\mathrm{O}$ and A$)$
\Rightarrow Number of permutations in vowel $=$
${ }_{1}^{2} \mathrm{P}=2$
Now, the remaining places $=5$
Remaining letters to be used $=5$
\Rightarrow Number of permutations $=$
${ }_{5}^{5} \mathrm{P}=\frac{5!}{(5-5)!}=\frac{5!}{0!}=120$.
Therefore, the total number of permutations $=2 \times 120=240$
10. In how many of the distinct permutations of the letters in MISSISSIPPI do the four I's not come together?

Solution:

Total number of letters in MISSISSIPPI $=11$
Letter Number of occurrence

M	1
I	4
S	4
P	2

\Rightarrow Number of permutations $=$
$\frac{11!}{1!4!4!2!}=34650$

We take that 4 I's come together, and they are treated as 1 letter,
\therefore Total number of letters $=11-4+1=8$
\Rightarrow Number of permutations $=$
$\frac{8!}{1!4!2!}=840$
Therefore, total number of permutations where four I's don't come together $=34650-840=33810$
11. In how many ways can the letters of the word PERMUTATIONS be arranged if the
(i) Words start with P and end with S,
(ii) Vowels are all together,
(iii) There are always 4 letters between P and S ?

Solution:

(i) Total number of letters in PERMUTATIONS $=12$

The only repeated letter is T; 2times
The first and last letters of the word are fixed as P and S , respectively.
Number of letters remaining $=12-2=10$
\Rightarrow Number of permutations $=$
$\frac{{ }_{10}^{10} \mathrm{P}}{2!}=\frac{10!}{2(10-10)!}=\frac{10!}{2}=1814400$
(ii) Number of vowels in PERMUTATIONS $=5(\mathrm{E}, \mathrm{U}, \mathrm{A}, \mathrm{I}, \mathrm{O})$

Now, we consider all the vowels together as one.
Number of permutations of vowels $=120$
Now, the total number of letters $=12-5+1=8$
\Rightarrow Number of permutations $=$
$\frac{{ }_{8}^{8} p}{2!}=\frac{8!}{2(8-8)!}=\frac{8!}{2}=20160$.

Therefore, the total number of permutations $=120 \times 20160=2419200$
(iii) The number of places is as 123456789101112

There should always be 4 letters between P and S .
Possible places of P and S are 1 and 6, 2 and 7, 3 and 8, 4 and 9,5 and 10, 6 and 11, 7 and 12
Possible ways $=7$,

Also, P and S can be interchanged,
No. of permutations $=2 \times 7=14$
The remaining 10 places can be filled with 10 remaining letters,
\therefore No. of permutations $=$
$\frac{{ }_{10}^{10} \mathrm{P}}{2!}=\frac{10!}{2(10-10)!}=\frac{10!}{2}=1814400$
Therefore, the total number of permutations $=14 \times 1814400=25401600$

