MISCELLANEOUS EXERCISE

1. How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?

Solution:

The word DAUGHTER has 3 vowels A, E, and U and 5 consonants D, G, H, T and R.
The three vowels can be chosen in ${ }^{3} \mathrm{C}_{2}$ as only two vowels are to be chosen.
Similarly, the five consonants can be chosen in ${ }^{5} \mathrm{C}_{3}$ ways.
\therefore The number of choosing 2 vowels and 5 consonants would be ${ }^{3} \mathrm{C}_{2} \times{ }^{5} \mathrm{C}_{3}$
$=\frac{3!}{2!(3-2)!} \times \frac{5!}{3!(5-3)!}=\frac{3!}{2!1!} \times \frac{5!}{3!2!}$
$=30$
\therefore The total number of ways of is 30 .
Each of these 5 letters can be arranged in 5 ways to form different words $={ }^{5} \mathrm{P}_{5}$
$\Rightarrow \frac{5!}{(5-5)!}=\frac{5!}{0!}=\frac{5!}{1}=5 \times 4 \times 3 \times 2 \times 1=120$
Total number of words formed would be $=30 \times 120=3600$
2. How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?

Solution:

In the word EQUATION, there are 5 vowels (A, E, I, O, U) and 3 consonants (Q, T, N).
The numbers of ways in which 5 vowels can be arranged are ${ }^{5} \mathrm{C}_{5}$
$\Rightarrow \frac{5!}{(5-5)!}=\frac{5 \times 4 \times 3 \times 2 \times 1}{0!}=\frac{120}{1}=120$
Similarly, the numbers of ways in which 3 consonants can be arranged are ${ }^{3} \mathrm{P}_{3}$
$\Rightarrow \frac{3!}{(3-3)!}=\frac{3 \times 2 \times 1}{0!}=\frac{6}{1}=6$

There are two ways in which vowels and consonants can appear together.
(AEIOU) (QTN) or (QTN) (AEIOU)
\therefore The total number of ways in which vowel and consonant can appear together are $2 \times{ }^{5} \mathrm{C}_{5} \times{ }^{3} \mathrm{C}_{3}$
$\therefore 2 \times 120 \times 6=1440$
3. A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of:
(i) Exactly $\mathbf{3}$ girls?
(ii) At least $\mathbf{3}$ girls?
(iii) At most 3 girls?

Solution:

(i) Given exactly 3 girls.

The total numbers of girls are 4 .
Out of which, 3 are to be chosen.
\therefore The number of ways in which choice would be made $={ }^{4} \mathrm{C}_{3}$
Numbers of boys are 9 out of which 4 are to be chosen which is given by ${ }^{\circ} \mathrm{C}_{4}$
Total ways of forming the committee with exactly three girls.
$={ }^{4} \mathrm{C}_{3} \times{ }^{9} \mathrm{C}_{4}$
$=\frac{4!}{3!(4-3)!} \times \frac{9!}{4!(9-4)!}=\frac{4!}{3!1!} \times \frac{9!}{4!5!}=\frac{9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times 5 \times 4 \times 3 \times 2 \times 1}=504$
(ii) Given at least 3 girls.

There are two possibilities for making a committee choosing at least 3 girls.
There are 3 girls and 4 boys, or there are 4 girls and 3 boys.
Choosing three girls we have done in (i)
Choosing four girls and 3 boys would be done in ${ }^{4} \mathrm{C}_{4}$ ways.
And choosing 3 boys would be done in ${ }^{9} \mathrm{C}_{3}$
Total ways $={ }^{4} \mathrm{C}_{4} \times{ }^{9} \mathrm{C}_{3}$
$=\frac{4!}{4!(4-4)!} \times \frac{9!}{3!(9-3)!}=\frac{4!}{4!0!} \times \frac{9!}{3!6!}=\frac{9 \times 8 \times 7 \times 6!}{3 \times 2 \times 1 \times 6!}=84$
The total number of ways of making the committee are
$504+84=588$
(iii) Given at most 3 girls

In this case, the numbers of possibilities are
0 girl and 7 boys
1 girl and 6 boys
2 girls and 5 boys
3 girls and 4 boys
Number of ways to choose 0 girl and 7 boys $={ }^{4} \mathrm{C}_{0} \times{ }^{9} \mathrm{C}_{7}$

$$
=\frac{4!}{0!(4-0)!} \times \frac{9!}{7!2!}=\frac{4!}{4!} \times \frac{9 \times 8 \times 7!}{7!\times 2 \times 1}=\frac{72}{2}=36
$$

Number of ways of choosing 1 girl and 6 boys $={ }^{4} \mathrm{C}_{1} \times{ }^{9} \mathrm{C}_{6}$
$\frac{4!}{1!3!} \times \frac{9!}{6!3!}=\frac{4 \times 3!}{3!} \times \frac{9 \times 8 \times 7 \times 6!}{6!\times 3 \times 2 \times 1}=336$
Number of ways of choosing 2 girls and 5 boys $={ }^{4} C_{2} \times{ }^{9} C_{5}$

$$
\frac{4!}{2!2!} \times \frac{9!}{5!4!}=\frac{4!}{2 \times 1 \times 2 \times 1} \times \frac{9 \times 7 \times 8 \times 6 \times 5!}{5!4!}=756
$$

The number of choosing 3 girls and 4 boys has been done in (1)
$=504$
The total number of ways in which a committee can have at most 3 girls are $=36+336+756+504=1632$
4. If the different permutations of all the letters of the word EXAMINATION are listed as in a dictionary, how many words are there in this list before the first word starts with E?

Solution:
In a dictionary, words are listed alphabetically, so to find the words
Listed before E should start with the letter either A, B, C or D.
But the word EXAMINATION doesn't have B, C or D.
Hence, the words should start with the letter A
The remaining 10 places are to be filled in by the remaining letters of the word EXAMINATION which are $\mathrm{E}, \mathrm{X}, \mathrm{A}, \mathrm{M}$, 2N, T, 2I, 0

Since the letters are repeating, the formula used would be
$=\frac{\mathrm{n}!}{\mathrm{p}_{1}!\mathrm{p}_{2}!\mathrm{p}_{3!}}$
Where n is the remaining number of letters, p_{1} and p_{2} are the number of times the repeated terms occurs.
$=\frac{10!}{2!2!}=907200$
The number of words in the list before the word starting with E
$=$ words starting with letter $\mathrm{A}=907200$
5. How many 6-digit numbers can be formed from the digits $0,1,3,5,7$ and 9 , which are divisible by 10 and no digit is repeated?

Solution:

The number is divisible by 10 if the unit place has 0 in it.
The 6 -digit number is to be formed out of which unit place is fixed as 0 .
The remaining 5 places can be filled by 1, 3, 5, 7 and 9 .
Here, $\mathrm{n}=5$
And the numbers of choice available are 5 .
So, the total ways in which the rest of the places can be filled are ${ }^{5} P_{5}$
$=\frac{5!}{(5-5)!} \times 1=\frac{5!}{1} \times 1=5 \times 4 \times 3 \times 2 \times 1 \times 1=120$
6. The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?

Solution:

We know that there are 5 vowels and 21 consonants in the English alphabet.
Choosing two vowels out of 5 would be done in ${ }^{5} \mathrm{C}_{2}$ ways.
Choosing 2 consonants out of 21 can be done in ${ }^{21} \mathrm{C}_{2}$ ways.
The total number of ways to select 2 vowels and 2 consonants
$={ }^{5} \mathrm{C}_{2} \times{ }^{21} \mathrm{C}_{2}$
$\Rightarrow \frac{5!}{2!3!} \times \frac{21!}{2!19!}=\frac{5 \times 4 \times 3!}{2!3!} \times \frac{21 \times 20 \times 19!}{2 \times 1 \times 19!}=2100$

Each of these four letters can be arranged in four ways ${ }^{4} \mathrm{P}_{4}$
$\Rightarrow \frac{4!}{0!}=4 \times 3 \times 2 \times 1=24$ ways
Total numbers of words that can be formed are
$24 \times 2100=50400$
7. In an examination, a question paper consists of 12 questions divided into two parts, i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?

Solution:
The student can choose 3 questions from part I and 5 from part II
Or
4 questions from part I and 4 from part II
5 questions from part 1 and 3 from part II
3 questions from part I and 5 from part II can be chosen in
$={ }^{5} \mathrm{C}_{3} \times{ }^{7} \mathrm{C}_{5}$
$=\frac{5!}{3!2!} \times \frac{7!}{5!2!}=\frac{5 \times 4 \times 3!}{3!\times 2 \times 1} \times \frac{7 \times 6 \times 5!}{5!\times 2 \times 1}=210$
4 questions from part I and 4 from part II can be chosen in
$={ }^{5} \mathrm{C}_{4} \times{ }^{7} \mathrm{C}_{4}$
$=\frac{5!}{4!1!} \times \frac{7!}{4!3!}=\frac{5 \times 4!}{4!} \times \frac{7 \times 6 \times 5 \times 4!}{4!\times 3 \times 2 \times 1}=175$
5 questions from part 1 and 3 from part II can be chosen in
$={ }^{5} \mathrm{C}_{5} \times{ }^{7} \mathrm{C}_{3}$
$=\frac{5!}{5!0!} \times \frac{7!}{3!4!}=1 \times \frac{7 \times 6 \times 5 \times 4!}{3 \times 2 \times 1 \times 4!}=35$
Now the total number of ways in which a student can choose the questions are $=210+175+35=420$
8. Determine the number of 5 -card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.

NCERT Solutions for Class 11 Maths Chapter 7 -
 Permutations and Combinations

Solution:

We have a deck of cards that has 4 kings.
The numbers of remaining cards are 52.
Ways of selecting a king from the deck $={ }^{4} \mathrm{C}_{1}$

Ways of selecting the remaining 4 cards from 48 cards $={ }^{48} \mathrm{C}_{4}$
The total number of selecting the 5 cards having one king always
$={ }^{4} \mathrm{C}_{1} \times{ }^{48} \mathrm{C}_{4}$
$=\frac{4!}{1!3!} \times \frac{48!}{4!44!}=\frac{4 \times 3!}{3!} \times \frac{48 \times 47 \times 46 \times 45 \times 44!}{4 \times 3 \times 2 \times 1 \times 44!}=778320$
9. It is required to seat 5 men and 4 women in a row so that the women occupy even places. How many such arrangements are possible?

Solution:

Given there is a total of 9 people.
Women occupy even places, which means they will be sitting in $2^{\text {nd }}, 4^{\text {th }}, 6^{\text {th }}$ and $8^{\text {th }}$ place where as men will be sitting in $1^{\text {st }}, 3^{\text {rd }}, 5^{\text {th }}, 7^{\text {th }}$ and $9^{\text {th }}$ place.

4 women can sit in four places and ways they can be seated $={ }^{4} \mathrm{P}_{4}$
$=\frac{4!}{(4-4)!}=\frac{4 \times 3 \times 2 \times 1}{0!}=24$

5 men can occupy 5 seats in 5 ways.
The number of ways in which these can be seated $={ }^{5} \mathrm{P}_{5}$
$=\frac{5!}{(5-5)!}=\frac{5 \times 4 \times 3 \times 2 \times 1}{1}=120$
The total numbers of sitting arrangements possible are
$24 \times 120=2880$
10. From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?

Solution:

In this question, we get 2 options, which are
(i) Either all 3 will go

Then, the remaining students in the class are: $25-3=22$
The number of students remained to be chosen for party $=7$
Number of ways to choose the remaining 22 students $={ }^{22} \mathrm{C}_{7}$
$=$
$\frac{22!}{7!15!}=170544$
(ii) None of them will go

The students going will be 10 .
Remaining students eligible for going $=22$
The number of ways in which these 10 students can be selected are ${ }^{22} \mathrm{C}_{10}$

$$
=\frac{22!}{10!12!}=646646
$$

The total number of ways in which students can be chosen is
$=170544+646646=817190$
11. In how many ways can the letters of the word ASSASSINATION be arranged so that all the S 's are together?

Solution:

In the given word ASSASSINATION, there are 4 ' S '. Since all the 4 ' S ' have to be arranged together, let us take them as one unit.

The remaining letters are $=3$ ' A ', 2 ' I , 2 ' N ', T
The number of letters to be arranged is 9 (including 4 ' S ').
Using the formula
n !
$\overline{p_{1}!p_{2}!p_{3}!}$ where n is the number of terms and $p_{1}, p_{2} p_{3}$ are the number of times the repeating letters repeat themselves.
Here, $p_{1}=3, p_{2}=2, p_{3}=2$
Putting the values in formula we get
$\frac{10!}{3!2!2!}=\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3!}{3!\times 2 \times 2 \times 1 \times 1}=151200$

