EXERCISE 8.2

Find the coefficient of

1. x^{5} in $(x+3)^{8}$

Solution:

The general term T_{r+1} in the binomial expansion is given by $T_{r+1}={ }^{n} C_{r} a^{n+t} b^{r}$
Here x^{5} is the $\mathrm{T}_{\mathrm{r}+1}$ term so $\mathrm{a}=\mathrm{x}, \mathrm{b}=3$ and $\mathrm{n}=8$
$\mathrm{T}_{\mathrm{r}+1}={ }^{8} \mathrm{C}_{\mathrm{r}} \mathrm{X}^{8 \mathrm{r}} 3^{\mathrm{r}}$ (i)

To find out X^{5}
We have to equate $\mathrm{x}^{5}=\mathrm{x}^{8 .}$
$\Rightarrow \mathrm{r}=3$
Putting the value of r in (I), we get

$$
T_{3+1}={ }^{8} C_{3} x^{8-3} 3^{3}
$$

$$
\mathrm{T}_{4}=\frac{8!}{3!5!} \times \mathrm{x}^{5} \times 27
$$

$=1512 \mathrm{x}^{5}$
Hence the coefficient of $\mathrm{X}^{5}=1512$.
2. $a^{5} b^{7}$ in $(a-2 b)^{12}$

Solution:

The general term $\mathrm{T}_{\mathrm{r}+1}$ in the binomial expansion is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{n} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\text {ner }} \mathrm{b}^{r}$
Here $\mathrm{a}=\mathrm{a}, \mathrm{b}=-2 \mathrm{~b} \& \mathrm{n}=12$
Substituting the values, we get
$\mathrm{T}_{\mathrm{r}+1}={ }^{12} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{12 \mathrm{r} \cdot}(-2 \mathrm{~b})^{\mathrm{r}}$. \qquad
To find a^{5}
We equate $\mathrm{a}^{12 \cdot x}=\mathrm{a}^{5}$
$r=7$
Putting $\mathrm{r}=7$ in (i)
$\mathrm{T}_{8}={ }^{12} \mathrm{C}_{7} \mathrm{a}^{5}(-2 \mathrm{~b})^{7}$
$T_{8}=\frac{12!}{7!5!} \times a^{5} \times(-2)^{7} b^{7}$
$=-101376 a^{5} b^{7}$
Hence, the coefficient of $\mathrm{a}^{5} \mathrm{~b}^{7}=-101376$.
Write the general term in the expansion of
3. $\left(x^{2}-y\right)^{6}$

Solution:
The general term $\mathrm{T}_{\mathrm{r}+1}$ in the binomial expansion is given by
$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{br}$. \qquad
Here, $a=x^{2}, n=6$ and $b=-y$
Putting values in (i)
$\mathrm{T}_{\mathrm{r}+1}={ }^{6} \mathrm{C}_{\mathrm{r}} \mathrm{X}{ }^{2(6-\mathrm{r})}(-1)^{\mathrm{r}} \mathrm{y}^{\mathrm{r}}$
$=\frac{6!}{r!(6-r)!} \times x^{12-2 r} \times(-1)^{r} \times y^{r}$
$=-1^{r} \frac{6!}{r!(6-r)!} \times x^{12-2 r} \times y^{r}$
$=-1^{r}{ }^{6} c_{r} \cdot X^{12-2 r} \cdot y^{r}$
4. $\left(\mathrm{x}^{2}-\mathrm{y} \mathrm{x}\right)^{12}, \mathrm{x} \neq 0$

Solution:

The general term T_{r+1} in the binomial expansion is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Here $\mathrm{n}=12, \mathrm{a}=\mathrm{x}^{2}$ and $\mathrm{b}=-\mathrm{y} \mathrm{x}$
Substituting the values, we get
$\mathrm{T}_{\mathrm{n}+1}={ }^{12} \mathrm{C}_{\mathrm{r}} \times \mathrm{X}^{2(12 \mathrm{r})}(-1)^{\mathrm{r}} \mathrm{y}^{\mathrm{r}} \mathrm{X}^{\mathrm{r}}$
$=\frac{12!}{r!(12-r)!} \times x^{24-2 r}-1^{r} y^{r} x^{r}$
$=-1^{r} \frac{12!}{r!(12-r)!} x^{24-r} y^{r}$
$=-1^{1212} \mathrm{c}_{\mathrm{r}} \cdot \mathrm{X}^{24-2 x} \cdot \mathrm{y}^{\mathrm{r}}$
5. Find the 4 th term in the expansion of $(x-2 y)^{12}$.

Solution:

The general term $\mathrm{T}_{\mathrm{r}+1}$ in the binomial expansion is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{n} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\text {ntr }} \mathrm{b}^{r}$
Here, $a=x, n=12, r=3$ and $b=-2 y$
By substituting the values, we get
$\mathrm{T}_{4}={ }^{12} \mathrm{C}_{3} \mathrm{x}^{9}(-2 \mathrm{y})^{3}$
$=\frac{12!}{3!9!} \times \mathrm{x}^{9} \times-8 \times \mathrm{y}^{3}$
$=-\frac{12 \times 11 \times 10 \times 8}{3 \times 2 \times 1} \times \mathrm{x}^{9} \mathrm{y}^{3}$
$=-1760 x^{9} y^{3}$
6. Find the $13^{\text {th }}$ term in the expansion of

$$
\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}, x \neq 0
$$

Solution:

The general term T_{r+1} in the binomial expansion is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Here $a=9 x, b=-\frac{1}{3 \sqrt{x}} n=18$ and $r=12$
Putting values
$T_{13}=\frac{18!}{12!6!} 9 \mathrm{x}^{18-12}\left(-\frac{1}{3 \sqrt{\mathrm{x}}}\right)^{12}$
$=\frac{(18 \times 17 \times 16 \times 15 \times 14 \times 13 \times 12!)}{12!\times 6 \times 5 \times 4 \times 3 \times 2 \times 1} \times 3^{12} \times \mathrm{x}^{6} \times \frac{1}{\mathrm{x}^{6}} \times \frac{1}{3^{12}}$
$=18564$
Find the middle terms in the expansions of
7. $\left(3-\frac{x^{3}}{6}\right)^{7}$

Solution:

Here $\mathrm{n}=7$ so there would be two middle terms given by

$$
\left(\frac{\mathrm{n}+1^{\text {th }}}{2}\right) \text { term }=4^{\text {th }} \text { and }\left(\frac{\mathrm{n}+1}{2}+1\right)^{\text {th }} \text { term }=5^{\text {th }}
$$

We have

$$
\mathrm{a}=3, \mathrm{n}=7 \text { and } \mathrm{b}=-\frac{\mathrm{x}^{3}}{6}
$$

For $T_{4}, r=3$
The term will be
$T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
$T_{4}=\frac{7!}{3!} 3^{4}\left(-\frac{x^{3}}{6}\right)^{3}$
$=-\frac{7 \times 6 \times 5 \times 4}{3 \times 2 \times 1} \times 3^{4} \times \frac{\mathrm{x}^{9}}{2^{3} 3^{3}}$
$=-\frac{105}{8} \mathrm{x}^{9}$
For T_{5} term, $\mathrm{r}=4$
The term $\mathrm{T}_{\mathrm{r}+1}$ in the binomial expansion is given by
$T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
$T_{5}=\frac{7!}{4!3!} 3^{3}\left(-\frac{x^{3}}{6}\right)^{4}$
$=\frac{7 \times 6 \times 5 \times 4!}{4!3!} \times \frac{3^{3}}{2^{4} 3^{4}} \times \mathrm{x}^{3}=\frac{35 \mathrm{x}^{12}}{48}$
8. $\left(\frac{x}{3}+9 y\right)^{10}$

Solution:

Here n is even so the middle term will be given by $\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ term $=6^{\text {th }}$ term
The general term T_{r+1} in the binomial expansion is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Now $\mathrm{a}=\frac{\mathrm{x}}{3}, \mathrm{~b}=9 \mathrm{y}, \mathrm{n}=10$ and $\mathrm{r}=5$
Substituting the values
$T_{6}=\frac{10!}{5!5!} \times\left(\frac{x}{3}\right)^{5} \times(9 y)^{5}$
$T_{6}=\frac{10!}{5!5!} \times\left(\frac{x}{3}\right)^{5} \times(9 y)^{5}$
$=\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5!\times 5 \times 4 \times 3 \times 2 \times 1} \times \frac{x^{5}}{3^{5}} \times 3^{10} \times y^{5}$
$=61236 x^{5} y^{5}$
9. In the expansion of $(1+a)^{m+n}$, prove that coefficients of a^{m} and a^{n} are equal.

Solution:

We know that the general term T_{r+1} in the binomial expansion is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Here $\mathrm{n}=\mathrm{m}+\mathrm{n}, \mathrm{a}=1$ and $\mathrm{b}=\mathrm{a}$
Substituting the values in the general form
$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{m}+\mathrm{n}} \mathrm{C}_{\mathrm{r}} 1^{\mathrm{m}+\mathrm{n}-\mathrm{r}} \mathrm{a}^{\mathrm{r}}$
$={ }^{m+n} C_{r} a^{r}$.
Now, we have that the general term for the expression is,
$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{m}+\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{ar}^{\mathrm{r}}$
Now, for coefficient of a^{m}
$\mathrm{T}_{\mathrm{m}+1}={ }^{\mathrm{m}+\mathrm{n}} \mathrm{C}_{\mathrm{m}} \mathrm{a}^{\mathrm{m}}$

Hence, for the coefficient of a^{m}, the value of $r=m$

So, the coefficient is ${ }^{m+n} C_{m}$

Similarly, the coefficient of a^{n} is ${ }^{\mathrm{m+n}} \mathrm{C}_{\mathrm{n}}$
${ }^{m+n} C_{m}=\frac{(m+n)!}{m!n!}$
And also, ${ }^{m+n} C_{n}=\frac{(m+n)!}{m!n!}$
The coefficient of a^{m} and a^{n} are same that is $\frac{(m+n)!}{m!n!}$
10. The coefficients of the $(r-1)^{\text {th }}, r^{\text {th }}$ and $(r+1)^{\text {th }}$ terms in the expansion $o f(x+1)^{n}$ are in the ratio 1:3:5. Find n and r.

Solution:

The general term T_{r+1} in the binomial expansion is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Here, the binomial is $(1+\mathrm{x})^{\mathrm{n}}$ with $\mathrm{a}=1, \mathrm{~b}=\mathrm{x}$ and $\mathrm{n}=\mathrm{n}$
The $(r+1)^{\text {th }}$ term is given by
$T_{(r+1)}={ }^{n} C_{r} 1^{n-r} X^{r}$
$T_{(r+1)}={ }^{n} C_{r} X^{r}$
The coefficient of $(r+1)^{\text {th }}$ term is ${ }^{n} C_{r}$
The $r^{\text {th }}$ term is given by $(r-1)^{\text {th }}$ term
$\mathrm{T}_{(\mathrm{r}+1-1)}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1} \mathrm{X}^{\mathrm{r}-1}$
$\mathrm{T}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1} \mathrm{X}^{\mathrm{r}-1}$
\therefore the coefficient of $\mathrm{r}^{\text {th }}$ term is ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}$
For $(\mathrm{r}-1)^{\mathrm{th}}$ term, we will take $(\mathrm{r}-2)^{\mathrm{th}}$ term
$\mathrm{T}_{\mathrm{r}-2+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-2} \mathrm{X}^{\mathrm{r}-2}$
$\mathrm{T}_{\mathrm{r}-1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-2} \mathrm{X}^{\mathrm{r}-2}$
\therefore the coefficient of $(\mathrm{r}-1)^{\text {th }}$ term is ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-2}$
Given that the coefficient of $(r-1)^{\text {th }}, r^{\text {th }}$ and $r+1^{\text {th }}$ term are in ratio 1:3:5
Therefore,
$\frac{\text { the coefficient of } r-1^{\text {th }} \text { term }}{\text { coefficient of } \mathrm{r}^{\text {th }} \text { term }}=\frac{1}{3}$
$\mathrm{n}_{\substack{\mathrm{r}-2 \\ \mathrm{n}_{\mathrm{r}-1}^{\mathrm{c}}}}=\frac{1}{3}$
$\Rightarrow \frac{\frac{n!}{(r-2)!(n-r+2)!}}{\frac{n!}{(r-1)!(n-r+1)!}}=\frac{1}{3}$
On rearranging we get
$\frac{\mathrm{n}!}{(\mathrm{r}-2)!(\mathrm{n}-\mathrm{r}+2)!} \times \frac{(\mathrm{r}-1)!(\mathrm{n}-\mathrm{r}+1)!}{\mathrm{n}!}=\frac{1}{3}$
By multiplying
$\Rightarrow \frac{(r-1)(r-2)!(n-r+1)!}{(r-2)!(n-r+2)!}=\frac{1}{3}$
$\Rightarrow \frac{(r-1)(n-r+1)!}{(n-r+2)(n-r+1)!}=\frac{1}{3}$
On simplifying we get
$\Rightarrow \frac{(r-1)}{(n-r+2)}=\frac{1}{3}$
$\Rightarrow 3 r-3=n-r+2$
$\Rightarrow \mathrm{n}-4 \mathrm{r}+5=0$. .1

Also
$\frac{\text { the coefficient of } r^{\text {th }} \text { term }}{\text { coefficient of } r+1^{\text {th }} \text { term }}=\frac{3}{5}$
$\Rightarrow \frac{\frac{n!}{(r-1)!(n-r+1)!}}{\frac{n!}{r!(n-r)!}}=\frac{3}{5}$
On rearranging we get
$\Rightarrow \frac{n!}{(r-1)!(n-r+1)!} \times \frac{r!(n-r)!}{n!}=\frac{3}{5}$
By multiplying
$\Rightarrow \frac{r(r-1)!(n-r)!}{(r-1)!(n-r+1)!}=\frac{3}{5}$
$\Rightarrow \frac{r(n-r)!}{(n-r+1)!}=\frac{3}{5}$
$\Rightarrow \frac{r(n-r)!}{(n-r+1)(n-r)!}=\frac{3}{5}$
On simplifying we get
$\Rightarrow \frac{\mathrm{r}}{(\mathrm{n}-\mathrm{r}+1)}=\frac{3}{5}$
$\Rightarrow 5 \mathrm{r}=3 \mathrm{n}-3 \mathrm{r}+3$
$\Rightarrow 8 \mathrm{r}-3 \mathrm{n}-3=0$. .2

We have 1 and 2 as
$n-4 r \pm 5=0$. \qquad1
$8 \mathrm{r}-3 \mathrm{n}-3=0 \ldots \ldots \ldots \ldots \ldots . . .$.
Multiplying equation 1 by number 2
$2 n-8 r+10=0$.3

Adding equations 2 and 3
$2 \mathrm{n}-8 \mathrm{r}+10=0$
$-3 n-8 r-3=0$
$\Rightarrow-\mathrm{n}=-7$
$\mathrm{n}=7$ and $\mathrm{r}=3$
11. Prove that the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is twice the coefficient of x^{n} in the expansion of $(1+$ $\mathbf{x})^{2 n-1}$.

Solution:

The general term T_{r+1} in the binomial expansion is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
The general term for binomial $(1+x)^{2 n}$ is
$\mathrm{T}_{\mathrm{r}+1}={ }^{2 n} \mathrm{C}_{\mathrm{r}} \mathrm{X}^{\mathrm{r}}$ \qquad .. 1

To find the coefficient of x^{n}
$\mathrm{r}=\mathrm{n}$
$\mathrm{T}_{\mathrm{n}+1}={ }^{2 n} \mathrm{C}_{\mathrm{n}} \mathrm{X}^{\mathrm{n}}$
The coefficient of X ${ }^{n}={ }^{2 n} C_{n}$
The general term for binomial $(1+x)^{2 n-1}$ is
$\mathrm{T}_{\mathrm{r}+1}={ }^{2 \mathrm{n}-1} \mathrm{C}_{\mathrm{r}} \mathrm{X}{ }^{\mathrm{r}}$
To find the coefficient of X^{n}
Putting $\mathrm{n}=\mathrm{r}$
$\mathrm{T}_{\mathrm{r}+1}={ }^{2 \mathrm{n}-1} \mathrm{C}_{\mathrm{r}} \mathrm{X}^{\mathrm{n}}$
The coefficient of $X^{n}={ }^{2 n-1} C_{n}$
We have to prove
Coefficient of x^{n} in $(1+x)^{2 n}=2$ coefficient of x^{n} in $(1+x)^{2 n-1}$
Consider LHS $={ }^{2 n} \mathrm{C}_{\mathrm{n}}$

$$
=\frac{2 n!}{n!(2 n-n)!}
$$

$$
=\frac{2 n!}{n!(n)!}
$$

Again consider RHS $=2 \times{ }^{2 n-1} C_{n}$
$=2 \times \frac{(2 n-1)!}{n!(2 n-1-n)!}$
$=2 \times \frac{(2 n-1)!}{n!(n-1)!}$
Now multiplying and dividing by n we get
$=2 \times \frac{(2 n-1)!}{n!(n-1)!} \times \frac{n}{n}$
$=\frac{2 n(2 n-1)!}{n!n(n-1)!}$
$=\frac{2 n!}{n!n!}$
From above equations LHS $=$ RHS
Hence the proof.
12. Find a positive value of m for which the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6 .

Solution:
The general term T_{r+1} in the binomial expansion is given by $T_{r+1}={ }^{n} C_{r} a^{n+r} b^{r}$
Here, $\mathrm{a}=1, \mathrm{~b}=\mathrm{x}$ and $\mathrm{n}=\mathrm{m}$
Putting the value
$\mathrm{T}_{\mathrm{r}+1}={ }^{m} \mathrm{C}_{\mathrm{r}} \mathrm{l}^{\mathrm{mrr}} \mathrm{X}^{r}$
$={ }^{m} \mathrm{C}_{\mathrm{r}} \mathrm{X}^{\mathrm{r}}$

We need the coefficient of x^{2}
\therefore putting $\mathrm{r}=2$
$\mathrm{T}_{2+1}={ }^{\mathrm{m}} \mathrm{C}_{2} \mathrm{X}^{2}$
The coefficient of $\mathrm{x}^{2}={ }^{\mathrm{m}} \mathrm{C}_{2}$
Given that coefficient of $\mathrm{x}^{2}={ }^{\mathrm{m}} \mathrm{C}_{2}=6$
$\Rightarrow \frac{\mathrm{m}!}{2!(\mathrm{m}-2)!}=6$
$\Rightarrow \frac{\mathrm{m}(\mathrm{m}-1)(\mathrm{m}-2)!}{2 \times 1 \times(\mathrm{m}-2)!}=6$
$\Rightarrow \mathrm{m}(\mathrm{m}-1)=12$
$\Rightarrow \mathrm{m}^{2}-\mathrm{m}-12=0$
$\Rightarrow \mathrm{m}^{2}-4 \mathrm{~m}+3 \mathrm{~m}-12=0$
$\Rightarrow \mathrm{m}(\mathrm{m}-4)+3(\mathrm{~m}-4)=0$
$\Rightarrow(\mathrm{m}+3)(\mathrm{m}-4)=0$
$\Rightarrow \mathrm{m}=-3,4$
We need the positive value of m , so $\mathrm{m}=4$

