EXERCISE 9.2

1. Find the sum of odd integers from 1 to 2001.

Solution:

The odd integers from 1 to 2001 are 1, 3, 5, ...1999, 2001.
It clearly forms a sequence in A.P.
Where the first term, $a=1$

The common difference, $d=2$

Now,
$a+(n-1) d=2001$
$1+(n-1)(2)=2001$
$2 n-2=2000$
$2 \mathrm{n}=2000+2=2002$
$\mathrm{n}=1001$

We know,
$\mathrm{S}_{\mathrm{n}}=\mathrm{n} / 2[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$

$$
\begin{aligned}
S_{n} & =\frac{1001}{2}[2 \times 1+(1001-1) \times 2] \\
& =\frac{1001}{2}[2+1000 \times 2] \\
& =\frac{1001}{2} \times 2002 \\
& =1001 \times 1001 \\
& =1002001
\end{aligned}
$$

Therefore, the sum of odd numbers from 1 to 2001 is 1002001.
2. Find the sum of all natural numbers lying between 100 and 1000 , which are multiples of 5 .

Solution:

The natural numbers lying between 100 and 1000 , which are multiples of 5 , are $105,110, \ldots 995$.

It clearly forms a sequence in A.P.

Where the first term, $a=105$
The common difference, $d=5$
Now,
$a+(n-1) d=995$
$105+(n-1)(5)=995$
$105+5 n-5=995$
$5 n=995-105+5=895$
$\mathrm{n}=895 / 5$
$\mathrm{n}=179$
We know,
$S_{\mathrm{n}}=\mathrm{n} / 2[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$

$$
\begin{aligned}
S_{n} & =\frac{179}{2}[2(105)+(179-1)(5)] \\
& =\frac{179}{2}[2(105)+(178)(5)] \\
& =179[105+(89) 5] \\
& =(179)(105+445) \\
& =(179)(550) \\
& =98450
\end{aligned}
$$

Therefore, the sum of all natural numbers lying between 100 and 1000 , which are multiples of 5 , is 98450 .
3. In an A.P, the first term is 2 , and the sum of the first five terms is one-fourth of the next five terms. Show that the $20^{\text {th }}$ term is $\mathbf{- 1 1 2}$.

Solution:

Given,
The first term (a) of an A.P = 2
Let's assume d is the common difference of the A.P.
So, the A.P. will be $2,2+d, 2+2 d, 2+3 d, \ldots$
Then,
Sum of first five terms $=10+10 d$

Sum of next five terms $=10+35 d$
From the question, we have
$10+10 d=1 / 4(10+35 d)$
$40+40 d=10+35 d$
$30=-5 d$
$d=-6$
$\mathrm{a}_{20}=\mathrm{a}+(20-1) \mathrm{d}=2+(19)(-6)=2-114=-112$
Therefore, the $20^{\text {th }}$ term of the A.P. is -112 .
4. How many terms of the A.P. $-6,-11 / 2,-5, \ldots$ are needed to give the sum $\mathbf{- 2 5}$?

Solution:

Let's consider the sum of n terms of the given A.P. as -25 .
We known that,
$\mathrm{S}_{\mathrm{n}}=\mathrm{n} / 2[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
where $n=$ number of terms, $a=$ first term, and $d=$ common difference
So here, $a=-6$
$d=-11 / 2+6=(-11+12) / 2=1 / 2$
Thus, we have

$$
\begin{aligned}
& -25=\frac{n}{2}\left[2 \times(-6)+(n-1)\left(\frac{1}{2}\right)\right] \\
& -50=n\left[-12+\frac{n}{2}-\frac{1}{2}\right] \\
& -50=n\left[-\frac{25}{2}+\frac{n}{2}\right] \\
& -100=n(-25+n) \\
& n^{2}-25 n+100=0 \\
& n^{2}-5 n-20 n+100=0 \\
& n(n-5)-20(n-5)=0 \\
& n=20 \text { or } 5
\end{aligned}
$$

5. In an A.P., if $p^{\text {th }}$ term is $1 / q$ and $q^{\text {th }}$ term is $1 / p$, prove that the sum of first $p q$ terms is $1 / 2(p q+1)$ where $p \neq q$.

Solution:

We know that the general term of an A.P is given by: $a_{n}=a+(n-1) d$ From the question. we have
$p^{\text {th }}$ term $=a_{p}=a+(p-1) d=\frac{1}{q}$
$q^{\text {th }}$ term $=a_{q}=a+(q-1) d=\frac{1}{p}$
Subtracting (2) from (1), we have

$$
\begin{aligned}
& (p-1) d-(q-1) d=\frac{1}{q}-\frac{1}{p} \\
& (p-1-q+1) d=\frac{p-q}{p q} \\
& (p-q) d=\frac{p-q}{p q} \\
& d=\frac{1}{p q}
\end{aligned}
$$

Using the value of d in (1), we get

$$
\begin{aligned}
& a+(p-1) \frac{1}{p q}=\frac{1}{q} \\
& \Rightarrow a=\frac{1}{q}-\frac{1}{q}+\frac{1}{p q}=\frac{1}{p q} \\
& \begin{aligned}
S_{p q} & =\frac{p q}{2}[2 a+(p q-1) d] \\
& =\frac{p q}{2}\left[\frac{2}{p q}+(p q-1) \frac{1}{p q}\right] \\
& =1+\frac{1}{2}(p q-1) \\
& =\frac{1}{2} p q+1-\frac{1}{2}=\frac{1}{2} p q+\frac{1}{2} \\
& =\frac{1}{2}(p q+1)
\end{aligned}
\end{aligned}
$$

Therefore, the sum of first pq terms of the A.P is $\frac{1}{2}(p q+1)$
6. If the sum of a certain number of terms of the A.P. $25,22,19, \ldots$ is $\mathbf{1 1 6}$. Find the last term.

Solution:
Given A.P.,
$25,22,19, \ldots$
Here,
First term, $\mathrm{a}=25$ and
Common difference, $\mathrm{d}=22-25=-3$
Also given, the sum of a certain number of terms of the A.P. is 116 .
The number of terms is n.
So, we have
$\mathrm{S}_{\mathrm{n}}=\mathrm{n} / 2[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]=116$
$116=\mathrm{n} / 2[2(25)+(\mathrm{n}-1)(-3)]$
$116 \times 2=n[50-3 n+3]$
$232=n[53-3 n]$
$232=53 n-3 n^{2}$
$3 n^{2}-53 n+232=0$
$3 n^{2}-24 n-29 n+232=0$
$3 n(n-8)-29(n-8)=0$
$(3 n-29)(n-8)=0$
Hence,
$\mathrm{n}=29 / 3$ or $\mathrm{n}=8$
As n can only be an integral value, $n=8$
Thus, the $8^{\text {n }}$ term is the last term of the A.P.
$\mathrm{a}_{8}=25+(8-1)(-3)$
$=25-21$
$=4$
7. Find the sum to \boldsymbol{n} terms of the A.P., whose $k^{\text {th }}$ term is $5 \boldsymbol{k}+1$.

Solution:

Given, the k^{h} term of the A.P. is $5 k+1$.
k^{h} term $=a_{k}=a+(k-1) d$

And,
$a+(k-1) d=5 k+1$
$a+k d-d=5 k+1$
On comparing the coefficient of k, we get $d=5$
$a-d=1$
$a-5=1$
$\Rightarrow a=6$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=\frac{n}{2}[2(6)+(n-1)(5)]$
$=\frac{n}{2}[12+5 n-5]$
$=\frac{n}{2}(5 n+7)$
8. If the sum of n terms of an A.P. is $\left(p n+q n^{2}\right)$, where p and q are constants, find the common difference.

Solution:
We know that,
$\mathrm{S}_{\mathrm{n}}=\mathrm{n} / 2[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
From the question, we have

$$
\begin{aligned}
& \frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]=\mathrm{pn}+\mathrm{qn}^{2} \\
& \frac{\mathrm{n}}{2}[2 \mathrm{a}+\mathrm{nd}-\mathrm{d}]=\mathrm{pn}+\mathrm{qn}^{2} \\
& \mathrm{na}+\mathrm{n}^{2} \frac{\mathrm{~d}}{2}-\mathrm{n} \cdot \frac{\mathrm{~d}}{2}=\mathrm{pn}+\mathrm{qn}^{2}
\end{aligned}
$$

On comparing the coefficients of n^{2} on both sides, we get
$\mathrm{d} / 2=\mathrm{q}$
Hence, $d=2 q$
Therefore, the common difference of the A.P. is $2 q$.
9. The sums of n terms of two arithmetic progressions are in the ratio $5 n+4: 9 n+6$. Find the ratio of their $18^{\text {th }}$ terms.

Solution:

Let a_{1}, a_{2}, and d_{1}, d_{2} be the first terms and the common difference of the first and second arithmetic progression, respectively.

Then, from the question, we have
$\frac{\text { Sum of } n \text { terms of first A.P. }}{\text { Sum of } n \text { terms of second A.P. }}=\frac{5 n+4}{9 n+6}$
$\frac{\frac{n}{2}\left[2 a_{1}+(n-1) d_{1}\right]}{\frac{n}{2}\left[2 a_{2}+(n-1) d_{2}\right]}=\frac{5 n+4}{9 n+6}$
$\frac{2 a_{1}+(n-1) d_{1}}{2 a_{2}+(n-1) d_{2}}=\frac{5 n+4}{9 n+6}$
Substituting $n=35$ in (1), we get
$\frac{2 a_{1}+34 d_{1}}{2 a_{2}+34 d_{2}}=\frac{5(35)+4}{9(35)+6}$
$\frac{a_{1}+17 d_{1}}{a_{2}+17 d_{2}}=\frac{179}{321}$
$\frac{18^{\text {th }} \text { term of first A.P. }}{18^{\text {th }} \text { term of second A.P }}=\frac{a_{1}+17 d_{1}}{a_{2}+17 d_{2}}$
From (2) and (3), we have
$\frac{18^{\text {th }} \text { term of first A.P. }}{18^{\text {th }} \text { term of second A.P. }}=\frac{179}{321}$
Therefore, the ratio of $18^{\text {th }}$ term of both the A.P.s is 179: 321.
10. If the sum of the first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first $(p+q)$ terms.

Solution:

Let's take a and d to be the first term and the common difference of the A.P., respectively.
Then, it is given that

$$
\begin{aligned}
& S_{p}=\frac{p}{2}[2 a+(p-1) d] \\
& S_{q}=\frac{q}{2}[2 a+(q-1) d]
\end{aligned}
$$

From the question, we have

$$
\begin{align*}
& \frac{p}{2}[2 a+(p-1) d]=\frac{q}{2}[2 a+(q-1) d] \\
& p[2 a+(p-1) d]=q[2 a+(q-1) d] \\
& 2 a p+p d(p-1)=2 a q+q d(q-1) \\
& 2 a(p-q)+d[p(p-1)-q(q-1)]=0 \\
& 2 a(p-q)+d\left[p^{2}-p-q^{2}+q\right]=0 \\
& 2 a(p-q)+d[(p-q)(p+q)-(p-q)]=0 \\
& 2 a(p-q)+d[(p-q)(p+q-1)]=0 \\
& 2 a+d(p+q-1)=0 \\
& \Rightarrow d=\frac{-2 a}{p+q-1} \tag{i}
\end{align*}
$$

So the sum of $(\mathrm{p}+\mathrm{q})$ terms will be,

$$
\begin{aligned}
S_{p+q} & =\frac{p+q}{2}[2 a+(p+q-1) \cdot d] \\
S_{p+q} & =\frac{p+q}{2}\left[2 a+(p+q-1)\left(\frac{-2 a}{p+q-1}\right)\right] \quad[\text { From (i) }] \\
& =\frac{p+q}{2}[2 a-2 a] \\
& =0
\end{aligned}
$$

Therefore, the sum of $(p+q)$ terms of the A.P. is 0 .
11. Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
$\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$ Prove that

Solution:
Let a_{1} and d be the first term and the common difference of the A.P., respectively.
Then, according to the question, we have

$$
\begin{align*}
& S_{p}=\frac{p}{2}\left[2 a_{1}+(p-1) d\right]=a \\
& \Rightarrow 2 a_{1}+(p-1) d=\frac{2 a}{p} \tag{1}\\
& S_{q}=\frac{q}{2}\left[2 a_{1}+(q-1) d\right]=b \\
& \Rightarrow 2 a_{1}+(q-1) d=\frac{2 b}{q} \tag{2}\\
& S_{r}=\frac{r}{2}\left[2 a_{1}+(r-1) d\right]=c \\
& \Rightarrow 2 a_{1}+(r-1) d=\frac{2 c}{r} \tag{3}
\end{align*}
$$

Now, subtracting (2) from (1), we get

$$
\begin{align*}
& (p-1) d-(q-1) d=\frac{2 a}{p}-\frac{2 b}{q} \\
& d(p-1-q+1)=\frac{2 a q-2 b p}{p q} \\
& d(p-q)=\frac{2 a q-2 b p}{v a} \\
& d=\frac{2(a q-b p)}{p q(p-q)} \tag{4}
\end{align*}
$$

Then, subracting (3) from (2), we get
$(q-1) d-(r-1) d=\frac{2 b}{q}-\frac{2 c}{r}$
$d(q-1-r+1)=\frac{2 b}{q}-\frac{2 c}{r}$
$d(q-r)=\frac{2 b r-2 q c}{q r}$
$d=\frac{2(b r-q c)}{q r(q-r)}$
On equating both the values of d obtained in (4) and (5), we get

$$
\begin{aligned}
& \frac{a q-b p}{p q(p-q)}=\frac{b r-q c}{q r(q-r)} \\
& \quad \frac{a q-b p}{p(p-q)}=\frac{b r-q c}{r(q-r)} \\
& r(q-r)(a q-b p)=p(p-q)(b r-q c) \\
& r(a q-b p)(q-r)=p(b r-q c)(p-q) \\
& (a q r-b p r)(q-r)=(b p r-c p q)(p-q)
\end{aligned}
$$

Dividing both sides by pqr, we have
$\left(\frac{a}{p}-\frac{b}{q}\right)(q-r)=\left(\frac{b}{q}-\frac{c}{r}\right)(p-q)$
$\frac{a}{p}(q-r)-\frac{b}{q}(q-r+p-q)+\frac{c}{r}(p-q)=0$
$\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
Hence, the given result is proved.
12. The ratio of the sums of m and n terms of an A.P. is $m^{2}: n^{2}$. Show that the ratio of the $m^{\text {th }}$ and the $n^{\text {th }}$ term is ($2 m-1$): $(2 n-1)$.

Solution:
Let's consider that a and b are the first term and the common difference of the A.P., respectively.
Then, from the question, we have
$\frac{\text { Sum of } m \text { terms }}{\text { Sum of } n \text { terms }}=\frac{\mathrm{m}^{2}}{\mathrm{n}^{2}}$
$\frac{\frac{m}{2}[2 a+(m-1) d]}{\frac{n}{2}[2 a+(n-1) d]}=\frac{m^{2}}{n^{2}}$
$\frac{2 a+(m-1) d}{2 a+(n-1) d}=\frac{m}{n}$
Putting $m=2 m-1$ and $n=2 n-1$ in (1), we get
$\frac{2 \mathrm{a}+(2 \mathrm{~m}-2) \mathrm{d}}{2 \mathrm{a}+(2 \mathrm{n}-2) \mathrm{d}}=\frac{2 \mathrm{~m}-1}{2 \mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{a}+(\mathrm{m}-1) \mathrm{d}}{\mathrm{a}+(\mathrm{n}-1) \mathrm{d}}=\frac{2 \mathrm{~m}-1}{2 \mathrm{n}-1}$
Now,
$\frac{\mathrm{m}^{\text {th }} \text { term of A.P. }}{\mathrm{n}^{\text {th }} \text { term of A.P. }}=\frac{a+(m-1) \mathrm{d}}{a+(n-1) \mathrm{d}}$
From (2) and (3), we have
$\frac{\mathrm{m}^{\text {th }} \text { term of A.P }}{\mathrm{n}^{\text {th }} \text { term of A.P }}=\frac{2 \mathrm{~m}-1}{2 \mathrm{n}-1}$
Hence, the given result is proved.
13. If the sum of n terms of an A.P. is $3 n^{2}+5 n$ and its $m^{\text {th }}$ term is $\mathbf{1 6 4}$, find the value of m.

Solution:

Let's consider a and b to be the first term and the common difference of the A.P., respectively.
$a_{m}=a+(m-1) d=164$.
The sum of the terms is given by,
$\mathrm{S}_{\mathrm{n}}=\mathrm{n} / 2[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\frac{n}{2}[2 a+n d-d]=3 n^{2}+5 n$
$n a+\frac{d}{2} n^{2}-\frac{d}{2} n=3 n^{2}+5 n$
$\frac{d}{2} n^{2}+\left(a-\frac{d}{2}\right) n=3 n^{2}+5 n$
On comparing the coefficient of n^{2} on both sides, we get
$\frac{d}{2}=3$
$\Rightarrow d=6$
On comparing the coefficient of n on both sides, we get

$$
\begin{aligned}
& a-\frac{d}{2}=5 \\
& a-3=5 \\
& a=8
\end{aligned}
$$

Hence, from (1), we get
$8+(m-1) 6=164$
$(m-1) 6=164-8=156$
$m-1=26$
$m=27$
Therefore, the value of m is 27 .
14. Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.

Solution:
Let's assume $A_{1}, A_{2}, A_{3}, A_{4}$, and A_{5} to be five numbers between 8 and 26 such that $8, A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, 26$ are in an A.P.

Here, we have,
$a=8, b=26, n=7$
So,
$26=8+(7-1) d$
$6 d=26-8=18$
$d=3$
Now,
$\mathrm{A}_{1}=a+d=8+3=11$
$\mathrm{A}_{2}=a+2 d=8+2 \times 3=8+6=14$
$\mathrm{A}_{3}=a+3 d=8+3 \times 3=8+9=17$
$\mathrm{A}_{4}=a+4 d=8+4 \times 3=8+12=20$
$\mathrm{A}_{5}=a+5 d=8+5 \times 3=8+15=23$
Therefore, the required five numbers between 8 and 26 are $11,14,17,20$, and 23 .
15. If $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the A.M. between a and b, then find the value of n.

Solution:
The A.M between a and b is given by $(a+b) / 2$
Then, according to the question,

$$
\begin{aligned}
& \frac{a+b}{2}=\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}} \\
& (a+b)\left(a^{n-1}+b^{n-1}\right)=2\left(a^{n}+b^{n}\right) \\
& a^{n}+a b^{n-1}+b a^{n-1}+b^{n}=2 a^{n}+2 b^{n} \\
& a b^{n-1}+a^{n-1} b=a^{n}+b^{n} \\
& a b^{n-1}-b^{n}=a^{n}-a^{n-1} b \\
& b^{n-1}(a-b)=a^{n-1}(a-b) \\
& b^{n-1}=a^{n-1} \\
& \left(\frac{a}{b}\right)^{n-1}=1=\left(\frac{a}{b}\right)^{0} \\
& n-1=0 \\
& n=1
\end{aligned}
$$

Thus, the value of n is 1 .
16. Between 1 and $31, m$ numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of $7^{\text {th }}$ and $(m-1)^{\text {th }}$ numbers is 5: 9. Find the value of m.

Solution:

Let's consider $a_{1}, a_{2}, \ldots a_{m}$ be m numbers such that $1, a_{1}, a_{2}, \ldots a_{m}, 31$ is an A.P.
And here,
$a=1, b=31, n=m+2$
So, $31=1+(m+2-1)(d)$
$30=(m+1) d$
$\mathrm{d}=30 /(\mathrm{m}+1)$ \qquad
Now,
$\mathrm{a}_{1}=a+d$
$\mathrm{a}_{2}=a+2 d$
$\mathrm{a}_{3}=a+3 d \ldots$
Hence, $\mathrm{a}_{7}=a+7 d$
$\mathrm{a}_{m-1}=a+(m-1) d$
According to the question, we have
$\frac{a+7 d}{a+(m-1) d}=\frac{5}{9}$
$\frac{1+7\left(\frac{30}{(m+1)}\right)}{1+(m-1)\left(\frac{30}{m+1}\right)}=\frac{5}{9}$
[From (1)]
$\frac{m+1+7(30)}{m+1+30(m-1)}=\frac{5}{9}$
$\frac{m+1+210}{m+1+30 m-30}=\frac{5}{9}$
$\frac{m+211}{31 m-29}=\frac{5}{9}$
$9 m+1899=155 m-145$
$155 m-9 m=1899+145$
$146 m=2044$
$m=14$
Therefore, the value of m is 14 .
17. A man starts repaying a loan as the first instalment of Rs. 100. If he increases the instalment by Rs 5 every month, what amount will he pay in the $30^{\text {th }}$ instalment?

Solution:

Given,
The first instalment of the loan is Rs 100.
The second instalment of the loan is Rs 105 , and so on as the instalment increases by Rs 5 every month.

Thus, the amount that the man repays every month forms an A.P.
And then, A.P. is $100,105,110, \ldots$
Where the first term, $a=100$

Common difference, $d=5$

So, the $30^{\text {th }}$ term in this A.P. will be
$\mathrm{A}_{30}=a+(30-1) d$
$=100+(29)(5)$
$=100+145$
$=245$
Therefore, the amount to be paid in the $30^{\text {th }}$ instalment will be Rs 245 .
18. The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.

Solution:

It's understood from the question that the angles of the polygon will form an A.P. with a common difference $d=5^{\circ}$ and first term $a=120^{\circ}$.

And we know that the sum of all angles of a polygon with n sides is $180^{\circ}(n-2)$.
Thus, we can say
$S_{n}=180^{\circ}(n-2)$
$\frac{n}{2}[2 a+(n-1) d]=180^{\circ}(n-2)$
$\frac{n}{2}\left[240^{\circ}+(n-1) 5^{\circ}\right]=180(n-2)$
$n[240+(n-1) 5]=360(n-2)$
$240 n+5 n^{2}-5 n=360 n-720$
$5 n^{2}+235 n-360 n+720=0$
$5 n^{2}-125 n+720=0$
$n^{2}-25 n+144=0$
$n^{2}-16 n-9 n+144=0$
$n(n-16)-9(n-16)=0$
$(n-9)(n-16)=0$
$n=9$ or 16
Thus, a polygon having 9 and 16 sides will satisfy the condition in the question.

