EXERCISE 9.4

Find the sum to \mathbf{n} terms of each of the series in Exercises 1 to 7.
$1.1 \times 2+2 \times 3+3 \times 4+4 \times 5+\ldots$

Solution:

Given series is $1 \times 2+2 \times 3+3 \times 4+4 \times 5+\ldots$
It's seen that,
$n^{\text {th }}$ term, $a_{n}=n(n+1)$

Then, the sum of n terms of the series can be expressed as

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n} k(k+1) \\
& =\sum_{k=1}^{n} k^{2}+\sum_{k=1}^{n} k \\
& =\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2} \\
& =\frac{n(n+1)}{2}\left(\frac{2 n+1}{3}+1\right) \\
& =\frac{n(n+1)}{2}\left(\frac{2 n+4}{3}\right) \\
& =\frac{n(n+1)(n+2)}{3}
\end{aligned}
$$

$2.1 \times 2 \times 3+2 \times 3 \times 4+3 \times 4 \times 5+\ldots$

Solution:

Given series is $1 \times 2 \times 3+2 \times 3 \times 4+3 \times 4 \times 5+\ldots$
It's seen that,
$n^{\text {th }}$ term, $a_{n}=n(n+1)(n+2)$
$=\left(n^{2}+n\right)(n+2)$
$=n^{3}+3 n^{2}+2 n$
Then, the sum of n terms of the series can be expressed as

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n} a_{k} \\
& =\sum_{k=1}^{n} k^{3}+3 \sum_{k=1}^{n} k^{2}+2 \sum_{k=1}^{n} k \\
& =\left[\frac{n(n+1)}{2}\right]^{2}+\frac{3 n(n+1)(2 n+1)}{6}+\frac{2 n(n+1)}{2} \\
& =\left[\frac{n(n+1)}{2}\right]^{2}+\frac{n(n+1)(2 n+1)}{2}+n(n+1) \\
& =\frac{n(n+1)}{2}\left[\frac{n(n+1)}{2}+2 n+1+2\right] \\
& =\frac{n(n+1)}{2}\left[\frac{n^{2}+n+4 n+6}{2}\right] \\
& =\frac{n(n+1)}{4}\left(n^{2}+5 n+6\right) \\
& =\frac{n(n+1)}{4}\left(n^{2}+2 n+3 n+6\right) \\
& =\frac{n(n+1)[n(n+2)+3(n+2)]}{4} \\
& =\frac{n(n+1)(n+2)(n+3)}{4}
\end{aligned}
$$

$3.3 \times 1^{2}+5 \times 2^{2}+7 \times 3^{2}+\ldots$
Solution:
Given series is $3 \times 1^{2}+5 \times 2^{2}+7 \times 3^{2}+\ldots$
It's seen that,
$n^{\text {h }}$ term, $a_{n}=(2 n+1) n^{2}=2 n^{3}+n^{2}$
Then, the sum of n terms of the series can be expressed as

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n} a_{k} \\
& =\sum_{k=1}^{n}=\left(2 k^{3}+k^{2}\right)=2 \sum_{k=1}^{n} k^{3}+\sum_{k=1}^{n} k^{2} \\
& =2\left[\frac{n(n+1)}{2}\right]^{2}+\frac{n(n+1)(2 n+1)}{6} \\
& =\frac{n^{2}(n+1)}{2}+\frac{n(n+1)(2 n+1)}{6} \\
& =\frac{n(n+1)}{2}\left[n(n+1)+\frac{2 n+1}{3}\right] \\
& =\frac{n(n+1)}{2}\left[\frac{3 n^{2}+3 n+2 n+1}{3}\right] \\
& =\frac{n(n+1)}{2}\left[\frac{3 n^{2}+5 n+1}{3}\right] \\
& =\frac{n(n+1)\left(3 n^{2}+5 n+1\right)}{6}
\end{aligned}
$$

4. Find the sum to \boldsymbol{n} terms of the series
$\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots$
Solution:

Given series is, $\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots$
It's seen that,
$n^{\text {th }}$ term, $a_{n}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$
(By partial fractions)
$a_{1}=\frac{1}{1}-\frac{1}{2}$
$a_{2}=\frac{1}{2}-\frac{1}{3}$
$a_{3}=\frac{1}{3}-\frac{1}{4} \ldots$
$a_{n}=\frac{1}{n}-\frac{1}{n+1}$
On adding the above terms column wise, we get
$a_{1}+a_{2}+\ldots+a_{n}=\left[\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots \frac{1}{n}\right]-\left[\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots \frac{1}{n+1}\right]$
$\therefore S_{n}=1-\frac{1}{n+1}=\frac{n+1-1}{n+1}=\frac{n}{n+1}$
5. Find the sum to n terms of the series $5^{2}+6^{2}+7^{2}+\ldots+20^{2}$

Solution:
Given series is $5^{2}+6^{2}+7^{2}+\ldots+20^{2}$
It's seen that,
n^{h} term, $a_{n}=(n+4)^{2}=n^{2}+8 n+16$
Then, the sum of n terms of the series can be expressed as

$$
\begin{aligned}
\mathrm{S}_{\mathrm{n}} & =\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}}=\sum_{\mathrm{k}=1}^{\mathrm{n}}\left(\mathrm{k}^{2}+8 \mathrm{k}+16\right) \\
& =\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{2}+8 \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}+\sum_{\mathrm{k}=1}^{\mathrm{n}} 16 \\
& =\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}+\frac{8 \mathrm{n}(\mathrm{n}+1)}{2}+16 \mathrm{n}
\end{aligned}
$$

Now, its found that
$16^{\text {th }}$ term is $(16+4)^{2}=20^{2}$
Thus,

$$
\begin{aligned}
\begin{aligned}
\mathrm{S}_{16} & =\frac{16(16+1)(2 \times 16+1)}{6}+\frac{8 \times 16 \times(16+1)}{2}+16 \times 16 \\
& =\frac{(16)(17)(33)}{6}+\frac{(8) \times 16 \times(16+1)}{2}+16 \times 16 \\
& =\frac{(16)(17)(33)}{6}+\frac{(8)(16)(17)}{2}+256 \\
& =1496+1088+256 \\
& =2840
\end{aligned} \\
\text { Hence, } 5^{2}+6^{2}+7^{2}+\ldots \ldots .+20^{2}=2840
\end{aligned}
$$

6. Find the sum to n terms of the series $3 \times 8+6 \times 11+9 \times 14+\ldots$

Solution:
Given series is $3 \times 8+6 \times 11+9 \times 14+\ldots$
It's found out that,
$a_{n}=\left(n^{\text {h }}\right.$ term of $\left.3,6,9 \ldots\right) \times\left(n^{\text {h }}\right.$ term of $\left.8,11,14, \ldots\right)$
$=(3 n)(3 n+5)$
$=9 n^{2}+15 n$
Then, the sum of n terms of the series can be expressed as

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n}\left(9 k^{2}+15 k\right) \\
& =9 \sum_{k=1}^{n} k^{2}+15 \sum_{k=1}^{n} k \\
& =9 \times \frac{n(n+1)(2 n+1)}{6}+15 \times \frac{n(n+1)}{2} \\
& =\frac{3 n(n+1)(2 n+1)}{2}+\frac{15 n(n+1)}{2} \\
& =\frac{3 n(n+1)}{2}(2 n+1+5) \\
& =\frac{3 n(n+1)}{2}(2 n+6) \\
& =3 n(n+1)(n+3)
\end{aligned}
$$

7. Find the sum to n terms of the series $1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right)+\ldots$

Solution:
Given series is $1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right)+\ldots$
Finding the $n^{\text {th }}$ term, we have

$$
\begin{aligned}
a_{n} & =\left(1^{2}+2^{2}+3^{2}+\ldots \ldots+n^{2}\right) \\
& =\frac{n(n+1)(2 n+1)}{6} \\
& =\frac{n\left(2 n^{2}+3 n+1\right)}{6} \\
& =\frac{2 n^{3}+3 n^{2}+n}{6} \\
& =\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n
\end{aligned}
$$

Now, the sum of n terms of the series can be expressed as

$$
\begin{aligned}
& S_{n}=\sum_{k=1}^{n} a_{k} \\
& =\sum_{k=1}^{n}\left(\frac{1}{3} k^{3}+\frac{1}{2} k^{2}+\frac{1}{6} k\right) \\
& =\frac{1}{3} \sum_{k=1}^{n} k^{3}+\frac{1}{2} \sum_{k=1}^{n} k^{2}+\frac{1}{6} \sum_{k=1}^{n} k \\
& =\frac{1}{3} \frac{n^{2}(n+1)^{2}}{(2)^{2}}+\frac{1}{2} \times \frac{n(n+1)(2 n+1)}{6}+\frac{1}{6} \times \frac{n(n+1)}{2} \\
& =\frac{n(n+1)}{6}\left[\frac{n(n+1)}{2}+\frac{(2 n+1)}{2}+\frac{1}{2}\right] \\
& =\frac{n(n+1)}{6}\left[\frac{n^{2}+n+2 n+1+1}{2}\right] \\
& =\frac{n(n+1)}{6}\left[\frac{n^{2}+n+2 n+2}{2}\right] \\
& =\frac{n(n+1)}{6}\left[\frac{n(n+1)+2(n+1)}{2}\right] \\
& =\frac{n(n+1)}{6}\left[\frac{(n+1)(n+2)}{2}\right] \\
& =\frac{n(n+1)^{2}}{12}(n+2)
\end{aligned}
$$

8. Find the sum to n terms of the series whose $n^{\text {th }}$ term is given by $n(n+1)(n+4)$.

Solution:
Given,
$a_{n}=n(n+1)(n+4)=n\left(n^{2}+5 n+4\right)=n^{3}+5 n^{2}+4 n$
Now, the sum of n terms of the series can be expressed as

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n} k^{3}+5 \sum_{k=1}^{n} k^{2}+4 \sum_{k=1}^{n} k \\
& =\frac{n^{2}(n+1)^{2}}{4}+\frac{5 n(n+1)(2 n+1)}{6}+\frac{4 n(n+1)}{2} \\
& =\frac{n(n+1)}{2}\left[\frac{n(n+1)}{2}+\frac{5(2 n+1)}{3}+4\right] \\
& =\frac{n(n+1)}{2}\left[\frac{3 n^{2}+3 n+20 n+10+24}{6}\right] \\
& =\frac{n(n+1)}{2}\left[\frac{3 n^{2}+23 n+34}{6}\right] \\
& =\frac{n(n+1)\left(3 n^{2}+23 n+34\right)}{12}
\end{aligned}
$$

9. Find the sum to n terms of the series whose $n^{\text {th }}$ term is given by $\boldsymbol{n}^{2}+2^{n}$

Solution:

Given,
The $\mathrm{n}^{\text {th }}$ term of the series as
$a_{n}=n^{2}+2^{n}$
Then, the sum of n terms of the series can be expressed as

$$
\begin{align*}
& \mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{2}+2^{\mathrm{k}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{2}+\sum_{\mathrm{k}=1}^{\mathrm{n}} 2^{\mathrm{k}} \tag{1}\\
& \text { Consider } \sum_{\mathrm{k}=1}^{\mathrm{n}} 2^{\mathrm{k}}=2^{1}+2^{2}+2^{3}+\ldots
\end{align*}
$$

The above series $2,2^{2}, 2^{3}, \ldots$ is a G.P. with both the first term and common ratio equal to 2 .

$$
\begin{equation*}
\therefore \sum_{k=1}^{n} 2^{k}=\frac{(2)\left[(2)^{n}-1\right]}{2-1}=2\left(2^{n}-1\right) \tag{2}
\end{equation*}
$$

Therefore, from (1) and (2), we obtain

$$
\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{2}+2\left(2^{\mathrm{n}}-1\right)=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}+2\left(2^{\mathrm{n}}-1\right)
$$

10. Find the sum to n terms of the series whose $n^{\text {th }}$ term is given by $(2 n-1)^{2}$

Solution:

Given,
The $\mathrm{n}^{\text {nh }}$ term of the series as:
$a_{n}=(2 n-1)^{2}=4 n^{2}-4 n+1$
Then, the sum of n terms of the series can be expressed as
$S_{n}=\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n}\left(4 k^{2}-4 k+1\right)$
$=4 \sum_{k=1}^{n} k^{2}-4 \sum_{k=1}^{n} k+\sum_{k=1}^{n} 1$
$=\frac{4 n(n+1)(2 n+1)}{6}-\frac{4 n(n+1)}{2}+n$
$=\frac{2 n(n+1)(2 n+1)}{3}-2 n(n+1)+n$
$=n\left[\frac{2\left(2 n^{2}+3 n+1\right)}{3}-2(n+1)+1\right]$
$=n\left[\frac{4 n^{2}+6 n+2-6 n-6+3}{3}\right]$
$=n\left[\frac{4 n^{2}-1}{3}\right]$
$=\frac{n(2 n+1)(2 n-1)}{3}$

