EXERCISE 10.2

1. Compute the magnitude of the following vectors.

$$
\vec{a}=\hat{i}+\hat{j}+\hat{k} ; \quad \vec{b}=2 \hat{i}-7 \hat{j}-3 \hat{k} ; \quad \vec{c}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}-\frac{1}{\sqrt{3}} \hat{k}
$$

Solution:

Given, vectors are

$$
\begin{aligned}
\vec{a} & =\hat{i}+\hat{j}+\hat{k} ; \quad \vec{b}=2 \hat{i}-7 \hat{j}-3 \hat{k} ; \quad \vec{c}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}-\frac{1}{\sqrt{3}} \hat{k} \\
|\vec{a}| & =\sqrt{(1)^{2}+(1)^{2}+(1)^{2}}=\sqrt{3} \\
\mid \vec{b} & =\sqrt{(2)^{2}+(-7)^{2}+(-3)^{2}} \\
& =\sqrt{4+49+9} \\
& =\sqrt{62} \\
|\vec{c}| & =\sqrt{\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(-\frac{1}{\sqrt{3}}\right)^{2}} \\
& =\sqrt{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}=1
\end{aligned}
$$

2. Write two different vectors having the same magnitude.

Solution:

Consider $\vec{a}=(\hat{i}-2 \hat{j}+4 \hat{k})$ and $\vec{b}=(2 \hat{i}+\hat{j}-4 \hat{k})$.
It can be observed that $|\vec{a}|=\sqrt{1^{2}+(-2)^{2}+4^{2}}=\sqrt{1+4+16}=\sqrt{21}$ and
$|\vec{b}|=\sqrt{2^{2}+1^{2}+(-4)^{2}}=\sqrt{4+1+16}=\sqrt{21}$
Thus, \vec{a} and \vec{b}^{i} are two different vectors having the same magnitude. Here, the vectors are different as they have different dir
3. Write two different vectors having the same direction.

Solution:
Two different vectors having the same directions are
Let us

Consider $\vec{p}=(\hat{i}+\hat{j}+\hat{k})$ and $\vec{q}=(2 \hat{i}+2 \hat{j}+2 \hat{k})$.
The direction cosines of \vec{p} are given by,
$l=\frac{1}{\sqrt{1^{2}+1^{2}+1^{2}}}=\frac{1}{\sqrt{3}}, m=\frac{1}{\sqrt{1^{2}+1^{2}+1^{2}}}=\frac{1}{\sqrt{3}}$, and $n=\frac{1}{\sqrt{1^{2}+1^{2}+1^{2}}}=\frac{1}{\sqrt{3}}$.
The direction cosines of \vec{q} are given by
$l=\frac{2}{\sqrt{2^{2}+2^{2}+2^{2}}}=\frac{2}{2 \sqrt{3}}=\frac{1}{\sqrt{3}}, m=\frac{2}{\sqrt{2^{2}+2^{2}+2^{2}}}=\frac{2}{2 \sqrt{3}}=\frac{1}{\sqrt{3}}$,
and $n=\frac{2}{\sqrt{2^{2}+2^{2}+2^{2}}}=\frac{2}{2 \sqrt{3}}=\frac{1}{\sqrt{3}}$.
Consider $\vec{p}=(\hat{i}+\hat{j}+\hat{k})$ and $\vec{q}=(2 \hat{i}+2 \hat{j}+2 \hat{k})$.
The direction cosines of \vec{p} are given by,
$l=\frac{1}{\sqrt{1^{2}+1^{2}+1^{2}}}=\frac{1}{\sqrt{3}}, m=\frac{1}{\sqrt{1^{2}+1^{2}+1^{2}}}=\frac{1}{\sqrt{3}}$, and $n=\frac{1}{\sqrt{1^{2}+1^{2}+1^{2}}}=\frac{1}{\sqrt{3}}$.
The direction cosines of \vec{q} are given by
$l=\frac{2}{\sqrt{2^{2}+2^{2}+2^{2}}}=\frac{2}{2 \sqrt{3}}=\frac{1}{\sqrt{3}}, m=\frac{2}{\sqrt{2^{2}+2^{2}+2^{2}}}=\frac{2}{2 \sqrt{3}}=\frac{1}{\sqrt{3}}$,
and $n=\frac{2}{\sqrt{2^{2}+2^{2}+2^{2}}}=\frac{2}{2 \sqrt{3}}=\frac{1}{\sqrt{3}}$.
4. Find the values of x and y so that the vectors $2 \hat{i}+3 \hat{j}$ and $x \hat{i}+y \hat{j}$ are equal

Solution:

Given vectors
$2 \hat{i}+3 \hat{j}$ and $x \hat{i}+y \hat{j}$ will be equal only if their corresponding components are equal.
Thus, the required values of x and y are 2 and 3 , respectively.
5. Find the scalar and vector components of the vector with the initial point $(2,1)$ and terminal point $(-5,7)$.

Solution:
The scalar and vector components are
The vector with initial point $\mathrm{P}(2,1)$ and terminal point $\mathrm{Q}(-5,7)$ can be shown as

$$
\begin{gathered}
\overrightarrow{\mathrm{PQ}}=(-5-2) \hat{i}+(7-1) \hat{j} \\
\overrightarrow{\mathrm{PQ}}=-7 \hat{i}+6 \hat{j}
\end{gathered}
$$

$-7 \hat{i}$ and $6 \hat{j}$. Thus, the required scalar components are -7 and 6 , while the vector components are $\vec{a}=\hat{i}-2 \hat{j}+\hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k}$ and $\vec{c}=\hat{i}-6 \hat{j}-7 \hat{k}$
6. Find the sum of the vectors.

Solution:

Let us find the sum of the vectors.
The given vectors are $\vec{a}=\hat{i}-2 \hat{j}+\hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k}$ and $\vec{c}=\hat{i}-6 \hat{j}-7 \hat{k}$
Hence,

$$
\begin{aligned}
& \vec{a}+\vec{b}+\vec{c}=(1-2+1) \hat{i}+(-2+4-6) \hat{j}+(1+5-7) \hat{k} \\
&=0 \cdot \hat{i}-4 \hat{j}-1 \cdot \hat{k} \\
&=-4 \hat{j}-\hat{k} \\
& \vec{a}=\hat{i}+\hat{j}+2 \hat{k}
\end{aligned}
$$

7. Find the unit vector in the direction of the vector.

Solution:
We know that
The unit vector \hat{a} in the direction of vector $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$ is given by $\hat{a}=\frac{\vec{a}}{|a|}$.
So,

$$
|\vec{a}|=\sqrt{1^{2}+1^{2}+2^{2}}=\sqrt{1+1+4}=\sqrt{6}
$$

Thus,
$\hat{a}=\frac{\vec{a}}{|\vec{a}|}=\frac{\hat{i}+\hat{j}+2 \hat{k}}{\sqrt{6}}=\frac{1}{\sqrt{6}} \hat{i}+\frac{1}{\sqrt{6}} \hat{j}+\frac{2}{\sqrt{6}} \hat{k}$

$\overrightarrow{\mathrm{PQ}}$

8. Find the unit vector in the direction of vector, where P and Q are the points
$(1,2,3)$ and $(4,5,6)$, respectively.

Solution:

We know that,

Given points are $P(1,2,3)$ and $Q(4,5,6)$.
So, $\overrightarrow{\mathrm{PQ}}=(4-1) \hat{i}+(5-2) \hat{j}+(6-3) \hat{k}=3 \hat{i}+3 \hat{j}+3 \hat{k}$
$|\overrightarrow{\mathrm{PQ}}|=\sqrt{3^{2}+3^{2}+3^{2}}=\sqrt{9+9+9}=\sqrt{27}=3 \sqrt{3}$
Thus, the unit vector in the direction of $\overrightarrow{P Q}$ is

$$
\frac{\overrightarrow{\mathrm{PQ}}}{|\overrightarrow{\mathrm{PQ}}|}=\frac{3 \hat{i}+3 \hat{j}+3 \hat{k}}{3 \sqrt{3}}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k}
$$

9. For given vectors $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}+\hat{j}-\hat{k}$, find the unit vector in the direction of the vector $\vec{a}+\vec{b}$

Solution:

We know that,
Given vectors are $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}+\hat{j}-\hat{k}$
$\vec{a}=2 \hat{i}-\hat{j}+2 \vec{k}$
$\vec{b}=-\hat{i}+\hat{j}-\hat{k}$
$\therefore \vec{a}+\vec{b}=(2-1) \hat{i}+(-1+1) \hat{j}+(2-1) \hat{k}=1 \hat{i}+0 \hat{j}+1 \hat{k}=\hat{i}+\hat{k}$
$|\vec{a}+\vec{b}|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$
Thus, the unit vector in the direction of $(\vec{a}+\vec{b})$ is
$\frac{(\vec{a}+\vec{b})}{|\vec{a}+\vec{b}|}=\frac{\hat{i}+\hat{k}}{\sqrt{2}}=\frac{1}{\sqrt{2}} \widehat{i}+\frac{1}{\sqrt{2}} \overparen{k}$.
10. Find a vector in the direction of the vector $5 \hat{i}-\hat{j}+2 \hat{k}$ which has magnitude of 8 units.

Solution:
Firstly,

Let $\vec{a}=5 \hat{i}-\hat{j}+2 \hat{k}$.
So,
$|\vec{a}|=\sqrt{5^{2}+(-1)^{2}+2^{2}}=\sqrt{25+1+4}=\sqrt{30}$
$\hat{a}=\frac{\vec{a}}{|\vec{a}|}=\frac{5 \hat{i}-\hat{j}+2 \hat{k}}{\sqrt{30}}$
Thus, the vector in the direction of vector $5 \hat{i}-\hat{j}+2 \hat{k}$ which has magnitude 8 units is given by,

$$
8 \hat{a}=8\left(\frac{5 \hat{i}-\hat{j}+2 \hat{k}}{\sqrt{30}}\right)=\frac{40}{\sqrt{30}} \hat{i}-\frac{8}{\sqrt{30}} \hat{j}+\frac{16}{\sqrt{30}} \hat{k}
$$

$$
=8\left(\frac{5 \vec{i}-\vec{j}+2 \vec{k}}{\sqrt{30}}\right)
$$

$$
=\frac{40}{\sqrt{30}} \vec{i}-\frac{8}{\sqrt{30}} \vec{j}+\frac{16}{\sqrt{30}} \vec{k}
$$

$$
8 \hat{a}=8\left(\frac{5 \hat{i}-\hat{j}+2 \hat{k}}{\sqrt{30}}\right)=\frac{40}{\sqrt{30}} \hat{i}-\frac{8}{\sqrt{30}} \hat{j}+\frac{16}{\sqrt{30}} \hat{k}
$$

$$
=8\left(\frac{5 \vec{i}-\vec{j}+2 \vec{k}}{\sqrt{30}}\right)
$$

$$
=\frac{40}{\sqrt{30}} \vec{i}-\frac{8}{\sqrt{30}} \vec{j}+\frac{16}{\sqrt{30}} \vec{k}
$$

11. Show that the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.

Solution:

First,
Let $\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $\vec{b}=-4 \hat{i}+6 \hat{j}-8 \hat{k}$.
It is seen that $\vec{b}=-4 \hat{i}+6 \hat{j}-8 \hat{k}=-2(2 \hat{i}-3 \hat{j}+4 \hat{k})=-2 \vec{a}$
$\therefore \vec{b}=\lambda \vec{a}$
where,
$\lambda=-2$
Therefore, we can say that the given vectors are collinear.
12. Find the direction cosines of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$

Solution:

First,

$$
\text { Let } \vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}
$$

The modulus is given by,
$|\vec{a}|=\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{1+4+9}=\sqrt{14}$
Thus, the direction cosines of \vec{a} are $\left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$.
13. Find the direction cosines of the vector joining the points $A(1,2,-3)$ and

B $(-1,-2,1)$ directed from A to B.

Solution:

We know that the given points are $\mathrm{A}(1,2,-3)$ and $\mathrm{B}(-1,-2,1)$.
Now,

$$
\begin{aligned}
& \overrightarrow{\mathrm{AB}}=(-1-1) \hat{i}+(-2-2) \hat{j}+\{1-(-3)\} \hat{k} \\
& \overrightarrow{\mathrm{AB}}=-2 \hat{i}-4 \hat{j}+4 \hat{k} \\
& |\overrightarrow{\mathrm{AB}}|=\sqrt{(-2)^{2}+(-4)^{2}+4^{2}}=\sqrt{4+16+16}=\sqrt{36}=6
\end{aligned}
$$

Therefore, the direction cosines of $\overrightarrow{\mathrm{AB}}$ are $\left(-\frac{2}{6},-\frac{4}{6}, \frac{4}{6}\right)=\left(-\frac{1}{3},-\frac{2}{3}, \frac{2}{3}\right)$.
14. Show that the vector $\hat{i}+\hat{j}+\hat{k}$ is equally inclined to the axes $\mathbf{O X}, \mathbf{O Y}$, and $\mathbf{O Z}$.

Solution:
Firstly,

Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}$.

Then,
$|\vec{a}|=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3}$
Hence, the direction cosines of \vec{a} are $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.
Now, let $\alpha_{2} \beta$, and γ be the angles formed by $\vec{a}^{\text {with }}$ the positive directions of x, y, and z axes.
So, we have $\cos \alpha=\frac{1}{\sqrt{3}}, \cos \beta=\frac{1}{\sqrt{3}}, \cos \gamma=\frac{1}{\sqrt{3}}$.
Therefore, the given vector is equally inclined to axes OX, OY, and OZ.
15. Find the position vector of a point R which divides the line joining two points P and Q, whose position vectors are $\hat{i}+2 \hat{j}-\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$, respectively, in the ratio $2: 1$
(i) internally
(ii) externally

Solution:

We know that
The position vector of point R dividing the line segment joining two points.
P and Q in the ratio $m: n$ is given by
(j) Internally: $\frac{m \vec{b}+n \vec{a}}{m+n}$
(ii) Externally: $\frac{m \vec{b}-n \vec{a}}{m-n}$

$$
\overrightarrow{\mathrm{OP}}=\hat{i}+2 \hat{j}-\hat{k} \text { and } \overrightarrow{\mathrm{OQ}}=-\hat{i}+\hat{j}+\hat{k}
$$

(i) The position vector of point R which divides the line joining two points P and Q internally in the ratio $2: 1$ is giv

$$
\begin{aligned}
\overrightarrow{\mathrm{OR}} & =\frac{2(-\hat{i}+\hat{j}+\hat{k})+1(\hat{i}+2 \hat{j}-\hat{k})}{2+1}=\frac{(-2 \hat{i}+2 \hat{j}+2 \hat{k})+(\hat{i}+2 \hat{j}-\hat{k})}{3} \\
& =\frac{-\hat{i}+4 \hat{j}+\hat{k}}{3}=-\frac{1}{3} \hat{i}+\frac{4}{3} \hat{j}+\frac{1}{3} \hat{k}
\end{aligned}
$$

(ii) The position vector of point R which divides the line joining two points P and Q externally in the ratio $2: 1$ is giv

$$
\begin{aligned}
\overrightarrow{\mathrm{OR}} & =\frac{2(-\hat{i}+\hat{j}+\hat{k})-1(\hat{i}+2 \hat{j}-\hat{k})}{2-1}=(-2 \hat{i}+2 \hat{j}+2 \hat{k})-(\hat{i}+2 \hat{j}-\hat{k}) \\
& =-3 \hat{i}+3 \hat{k}
\end{aligned}
$$

16. Find the position vector of the midpoint of the vector joining the points $P(2,3,4)$ and $Q(4,1,-\mathbf{2})$.

Solution:
The position vector of mid-point R of the vector joining points $\mathrm{P}(2,3,4)$ and $\mathrm{Q}(4,1,-2)$ is given by

$$
\begin{aligned}
\overrightarrow{\mathrm{OR}} & =\frac{(2 \hat{i}+3 \hat{j}+4 \hat{k})+(4 \hat{i}+\hat{j}-2 \hat{k})}{2}=\frac{(2+4) \hat{i}+(3+1) \hat{j}+(4-2) \hat{k}}{2} \\
& =\frac{6 \hat{i}+4 \hat{j}+2 \hat{k}}{2}=3 \hat{i}+2 \hat{j}+\hat{k}
\end{aligned}
$$

17. Show that the points A,B and C with position vectors, $\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}-5 \hat{k}$, respectively, form the vertices of a right-angled triangle.

Solution:
We know
Given position vectors of points A, B, and C are
$\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}-5 \hat{k}$
$\therefore \overrightarrow{\mathrm{AB}}=\vec{b}-\vec{a}=(2-3) \hat{i}+(-1+4) \hat{j}+(1+4) \hat{k}=-\hat{i}+3 \hat{j}+5 \hat{k}$
$\overrightarrow{\mathrm{BC}}=\vec{c}-\vec{b}=(1-2) \hat{i}+(-3+1) \hat{j}+(-5-1) \hat{k}=-\hat{i}-2 \hat{j}-6 \hat{k}$
$\overrightarrow{\mathrm{CA}}=\vec{a}-\vec{c}=(3-1) \hat{i}+(-4+3) \hat{j}+(-4+5) \hat{k}=2 \hat{i}-\hat{j}+\hat{k}$
Now,
$|\overrightarrow{\mathrm{AB}}|^{2}=(-1)^{2}+3^{2}+5^{2}=1+9+25=35$
$|\overrightarrow{\mathrm{BC}}|^{2}=(-1)^{2}+(-2)^{2}+(-6)^{2}=1+4+36=41$
$|\overrightarrow{C A}|^{2}=2^{2}+(-1)^{2}+1^{2}=4+1+1=6$
Hence,
$|\overrightarrow{\mathrm{AB}}|^{2}+|\overrightarrow{\mathrm{CA}}|^{2}=35+6=41=|\overrightarrow{\mathrm{BC}}|^{2}$
Hence, proved that the given points form the vertices of a right-angled triangle.
18. In triangle ABC (Fig 10.18), which of the following is not true.
(A) $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{0}$
(B) $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}-\overrightarrow{\mathrm{AC}}=\overrightarrow{0}$
(C) $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}-\overrightarrow{\mathrm{AC}}=\overrightarrow{0}$

Fig 10.18

Solution:

First, let us consider,

Applying the triangle law of addition in the given triangle, we get:

$$
\begin{align*}
& \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}} \tag{1}\\
& \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=-\overrightarrow{\mathrm{CA}} \\
& \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{0} \tag{2}
\end{align*}
$$

\therefore The equation given in alternative A is true.
$\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}}$
$\Rightarrow \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}-\overrightarrow{\mathrm{AC}}=\overrightarrow{0}$
\therefore The equation given in alternative B is true.
From equation (2), we have:
$\overrightarrow{\mathrm{AB}}-\overrightarrow{\mathrm{CB}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{0}$
\therefore The equation given in alternative D is true.
Now, consider the equation given in alternative C :

$$
\begin{align*}
& \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}-\overrightarrow{\mathrm{CA}}=\overrightarrow{0} \\
& \Rightarrow \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{CA}} \tag{3}
\end{align*}
$$

From equations (1) and (3), we get:

$$
\begin{aligned}
& \overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{CA}} \\
& \overrightarrow{\mathrm{AC}}=-\overrightarrow{\mathrm{AC}} \\
& \overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AC}}=\overrightarrow{0} \\
& 2 \overrightarrow{\mathrm{AC}}=\overrightarrow{0} \\
& \overrightarrow{\mathrm{AC}}=\overrightarrow{0}, \text { which is not true. }
\end{aligned}
$$

Thus, the equation given in alternative C is incorrect.
The correct answer is \mathbf{C}.
19. If \vec{a} and \vec{b} are two collinear vectors, then which of the following is incorrect?
A. $\vec{b}=\lambda \vec{a}$, for some scalar λ
B. $\vec{a}= \pm \vec{b}$
C. The respective components of \vec{a} and \vec{b} are proportional
D. Both the vectors \vec{a} and \vec{b} have the same direction, but different magnitudes

Solution:

We know,

If \vec{a} and \vec{b} are two collinear vectors, then they are parallel.
So, we have:
$\vec{b}=\lambda \vec{a}$ (For some scalar λ)
If $\lambda= \pm 1$, then $\vec{a}= \pm \vec{b}$.
If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$, then
$\vec{b}=\lambda \vec{a}$.
$b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}=\lambda\left(a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right)$
$b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}=\left(\lambda a_{1}\right) \hat{i}+\left(\lambda a_{2}\right) \hat{j}+\left(\lambda a_{3}\right) \hat{k}$
$b_{1}=\lambda a_{1}, b_{2}=\lambda a_{2}, b_{3}=\lambda a_{3}$
$\frac{b_{1}}{a_{1}}=\frac{b_{2}}{a_{2}}=\frac{b_{3}}{a_{3}}=\lambda$
Hence, the respective components of \vec{a} and \vec{b} are proportional.
But, vectors \vec{a} and \vec{b} can have different directions.
Thus, the statement given in \mathbf{D} is incorrect.
The correct answer is \mathbf{D}.
If \vec{a} and \vec{b} are two collinear vectors, then they are parallel.
So, we have:
$\vec{b}=\lambda \vec{a}$ (For some scalar λ)
If $\lambda= \pm 1$, then $\vec{a}= \pm \vec{b}$.
If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$, then
$\vec{b}=\lambda \vec{a}$.
$b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}=\lambda\left(a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right)$
$b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}=\left(\lambda a_{1}\right) \hat{i}+\left(\lambda a_{2}\right) \hat{j}+\left(\lambda a_{3}\right) \hat{k}$
$b_{1}=\lambda a_{1}, b_{2}=\lambda a_{2}, b_{3}=\lambda a_{3}$
$\frac{b_{1}}{a_{1}}=\frac{b_{2}}{a_{2}}=\frac{b_{3}}{a_{3}}=\lambda$
Hence, the respective components of \vec{a} and \vec{b} are proportional.
But, vectors \vec{a} and \vec{b} can have different directions.
Thus, the statement given in \mathbf{D} is incorrect.
The correct answer is D.

