EXERCISE 10.4

1. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}$

Solution:
It is given that,

$$
\begin{aligned}
\vec{a}=\hat{i} & -7 \hat{j}+7 \hat{k} \text { and } \vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k} \\
\vec{a} \times \vec{b} & =\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
1 & -7 & 7 \\
3 & -2 & 2
\end{array}\right| \\
& =\hat{i}(-14+14)-\hat{j}(2-21)+\hat{k}(-2+21)=19 \hat{j}+19 \hat{k}
\end{aligned}
$$

Therefore,

$$
|\vec{a} \times \vec{b}|=\sqrt{(19)^{2}+(19)^{2}}=\sqrt{2 \times(19)^{2}}=19 \sqrt{2}
$$

2. Find a unit vector perpendicular to each of the vector $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, where $\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$.

Solution:
It is given that,
$\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$
So, we have
$\vec{a}+\vec{b}=4 \hat{i}+4 \hat{j}, \vec{a}-\vec{b}=2 \hat{i}+4 \hat{k}$
$(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 4 & 4 & 0 \\ 2 & 0 & 4\end{array}\right|=\hat{i}(16)-\hat{j}(16)+\hat{k}(-8)=16 \hat{i}-16 \hat{j}-8 \hat{k}$
Thus,

$$
\begin{aligned}
|(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})| & =\sqrt{16^{2}+(-16)^{2}+(-8)^{2}} \\
& =\sqrt{2^{2} \times 8^{2}+2^{2} \times 8^{2}+8^{2}} \\
& =8 \sqrt{2^{2}+2^{2}+1}=8 \sqrt{9}=8 \times 3=24
\end{aligned}
$$

Therefore, the unit vector perpendicular to each of the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ is given by the relation,
$= \pm \frac{(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})}{|(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|}= \pm \frac{16 \hat{i}-16 \hat{j}-8 \hat{k}}{24}$
$= \pm \frac{2 \hat{i}-2 \hat{j}-\hat{k}}{3}= \pm \frac{2}{3} \hat{i} \mp \frac{2}{3} \hat{j} \mp \frac{1}{3} \hat{k}$
3. If a unit vector \vec{a} makes an angles $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k}, then find θ and hence, the compounds of \vec{a}.

Solution:
First,

Let unit vector \vec{a} have $\left(a_{1}, a_{2}, a_{3}\right)$ components.
$\Rightarrow \vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$
As \vec{a} is a unit vector, $|\vec{a}|=1$.
Also given, that \vec{a} makes angles $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with \hat{j}, and an acute angle θ with \hat{k}.
Then, we have
$\cos \frac{\pi}{3}=\frac{a_{1}}{|\vec{a}|}$
$\Rightarrow \frac{1}{2}=a_{1} \quad[|\vec{a}|=1]$
$\cos \frac{\pi}{4}=\frac{a_{2}}{|\vec{a}|}$
$\Rightarrow \frac{1}{\sqrt{2}}=a_{2} \quad[|\vec{a}|=1]$
Also, $\cos \theta=\frac{a_{3}}{|\vec{a}|}$.
$\Rightarrow a_{3}=\cos \theta$
Now,
$|a|=1$
$\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}=1$
$\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\cos ^{2} \theta=1$
$\frac{1}{4}+\frac{1}{2}+\cos ^{2} \theta=1$
$\frac{3}{4}+\cos ^{2} \theta=1$
$\cos ^{2} \theta=1-\frac{3}{4}=\frac{1}{4}$
$\cos \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3}$
$\therefore a_{3}=\cos \frac{\pi}{3}=\frac{1}{2}$
Thus, $\theta=\frac{\pi}{3}$ and the components of \vec{a} are $\left(\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2}\right)$
4. Show that
$(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$
Solution:

First, consider the LHS,
We have
$(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})$
$=(\vec{a}-\vec{b}) \times \vec{a}+(\vec{a}-\vec{b}) \times \vec{b} \quad$ [By distributivity of vector product over addition]
$=\vec{a} \times \vec{a}-\vec{b} \times \vec{a}+\vec{a} \times \vec{b}-\vec{b} \times \vec{b} \quad$ [Again, by distributivity of vector product over addition]
$=\overrightarrow{0}+\vec{a} \times \vec{b}+\vec{a} \times \vec{b}-\overrightarrow{0}$
$=2(\vec{a} \times \vec{b})$
5. Find λ and μ if $(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\lambda \hat{j}+\mu \hat{k})=\overrightarrow{0}$.

Solution:
It is given that

Given,
$(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\lambda \hat{j}+\mu \hat{k})=\overrightarrow{0}$
$\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 6 & 27 \\ 1 & \lambda & \mu\end{array}\right|=0 \hat{i}+0 \hat{j}+0 \hat{k}$
$\hat{i}(6 \mu-27 \lambda)-\hat{j}(2 \mu-27)+\hat{k}(2 \lambda-6)=0 \hat{i}+0 \hat{j}+0 \hat{k}$
On comparing the corresponding components, we have
$6 \mu-27 \lambda=0$
$2 \mu-27=0$
$2 \lambda-6=0$
Now,
$2 \lambda-6=0 \Rightarrow \lambda=3$
$2 \lambda-6=0 \Rightarrow \lambda=3$
$2 \mu-27=0 \Rightarrow \mu=\frac{27}{2}$
Thus, $\lambda=3$ and $\mu=\frac{27}{2}$.
6. Given that $\vec{a} \cdot \vec{b}=0$ and $^{\vec{a}} \times \vec{b}=\overrightarrow{0}$. What can you conclude about the vectors ${ }^{\vec{a}}$ and \vec{b} ? Solution:
It is given that,
$\vec{a} \cdot \vec{b}=0$
Then,
(i) Either $|\vec{a}|=0$ or $|\vec{b}|=0$, or $\vec{a} \perp \vec{b}$ (in case \vec{a} and \vec{b} are non-zero) $\vec{a} \times \vec{b}=0$
(ii) Either $|\vec{a}|=0$ or $|\vec{b}|=0$, or $\vec{a} \| \vec{b}$ (in case \vec{a} and \vec{b} are non-zero)

But, \vec{a} and \vec{b} cannot be perpendicular and parallel simultaneously.
Therefore,$|\vec{a}|=0$ or $|\vec{b}|=0$.
7. Let the vectors $\vec{a}, \vec{b}, \vec{c}$ given as $a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}, c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$. Then show that $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$

Solution:

It is given that

$$
\left.\begin{align*}
& \vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}, \vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k} \\
& (\vec{b}+\vec{c})=\left(b_{1}+c_{1}\right) \hat{i}+\left(b_{2}+c_{2}\right) \hat{j}+\left(b_{3}+c_{3}\right) \hat{k} \\
& \text { Now, } \vec{a} \times(\vec{b}+\vec{c})\left|\begin{array}{cc}
\hat{i} & \hat{j} \\
a_{1} & a_{2}
\end{array}\right| \begin{array}{c}
a_{3} \\
b_{1}+c_{1}
\end{array} b_{2}+c_{2} \\
& =\hat{i} b_{3}+c_{3}
\end{align*} \right\rvert\,
$$

And,

$$
\begin{align*}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
& =\hat{i}\left[a_{2} b_{3}-a_{3} b_{2}\right]+\hat{j}\left[b_{1} a_{3}-a_{1} b_{3}\right]+\hat{k}\left[a_{1} b_{2}-a_{2} b_{1}\right] \tag{2}\\
\vec{a} \times \vec{c} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| \\
& =\hat{i}\left[a_{2} c_{3}-a_{3} c_{2}\right]+\hat{j}\left[a_{3} c_{1}-a_{1} c_{3}\right]+\hat{k}\left[a_{1} c_{2}-a_{2} c_{1}\right] \tag{3}
\end{align*}
$$

On adding (2) and (3), we get
$(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})=\hat{i}\left[a_{2} b_{3}+a_{2} c_{3}-a_{3} b_{2}-a_{3} c_{2}\right]+\hat{j}\left[b_{1} a_{3}+a_{3} c_{1}-a_{1} b_{3}-a_{1} c_{3}\right]+\hat{k}\left[a_{1} b_{2}+a_{1} c_{2}-a_{2} b_{1}-a_{2} c_{1}\right]$
From (1) and (4), we obtain
$\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$

- Hence proved.

8. If either $\vec{a}=\overrightarrow{0}$ or $^{\vec{b}}=\overrightarrow{0}$, then $\vec{a} \times \vec{b}=\overrightarrow{0}$. Is the converse true? Justify your answer with an example.

Solution:
First, let us consider,

Take any parallel non-zero vectors so that $\vec{a} \times \vec{b}=\overrightarrow{0}$.
Let $\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{b}=4 \hat{i}+6 \hat{j}+8 \hat{k}$.
Then,
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 4 & 6 & 8\end{array}\right|=\hat{i}(24-24)-\hat{j}(16-16)+\hat{k}(12-12)=0 \hat{i}+0 \hat{j}+0 \hat{k}=\overrightarrow{0}$
Now, it's seen that
$|\vec{a}|=\sqrt{2^{2}+3^{2}+4^{2}}=\sqrt{29}$
$\therefore \vec{a} \neq \overrightarrow{0}$
$|\vec{b}|=\sqrt{4^{2}+6^{2}+8^{2}}=\sqrt{116}$
$\therefore \vec{b} \neq \overrightarrow{0}$
Thus, the converse of the given statement need not be true.
9. Find the area of the triangle with vertices $\mathbf{A}(\mathbf{1}, \mathbf{1}, \mathbf{2}), \mathrm{B}(\mathbf{2}, \mathbf{3}, 5)$ and $\mathrm{C}(\mathbf{1}, 5,5)$.

Solution:

We know

Given $\mathrm{A}(1,1,2), \mathrm{B}(2,3,5)$ and $\mathrm{C}(1,5,5)$ are the vertices of triangle ABC .
The adjacent sides $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{BC}}$ of $\triangle \mathrm{ABC}$ are given as:

$$
\begin{aligned}
& \overrightarrow{\mathrm{AB}}=(2-1) \hat{i}+(3-1) \hat{j}+(5-2) \hat{k}=\hat{i}+2 \hat{j}+3 \hat{k} \\
& \overrightarrow{\mathrm{BC}}=(1-2) \hat{i}+(5-3) \hat{j}+(5-5) \hat{k}=-\hat{i}+2 \hat{j}
\end{aligned}
$$

Now,
Area of $\triangle \mathrm{ABC}=\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}|$
$\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ -1 & 2 & 0\end{array}\right|=\hat{i}(-6)-\hat{j}(3)+\hat{k}(2+2)=-6 \hat{i}-3 \hat{j}+4 \hat{k}$
$\therefore|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}|=\sqrt{(-6)^{2}+(-3)^{2}+4^{2}}=\sqrt{36+9+16}=\sqrt{61}$
Therefore, the area of $\triangle A B C$ is $\frac{\sqrt{61}}{2}$ square units.
10. Find the area of the parallelogram whose adjacent sides are determined by the vector $\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$.

Solution:

Let us consider,
The area of the parallelogram whose adjacent sides are \vec{a} and \vec{b} is $|\vec{a} \times \vec{b}|$.
Now, the adjacent sides are given as:
$\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$
$\therefore \vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 3 \\ 2 & -7 & 1\end{array}\right|=\hat{i}(-1+21)-\hat{j}(1-6)+\hat{k}(-7+2)=20 \hat{i}+5 \hat{j}-5 \hat{k}$
$|\vec{a} \times \vec{b}|=\sqrt{20^{2}+5^{2}+5^{2}}=\sqrt{400+25+25}=15 \sqrt{2}$
Therefore, the area of the given parallelogram is $15 \sqrt{2}$ square units.
11. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angle between \vec{a} and \vec{b} is
(A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{\frac{\pi}{2}}$

Solution:
Explanation:

Given, $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$.
We know that $\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \hat{n}$, where \hat{n} is a unit vector perpendicular to both \vec{a} and \vec{b} and θ is the angle between \vec{a} and \vec{b}
Now, $\vec{a} \times \vec{b}$ is a unit vector if $|\vec{a} \times \vec{b}|=1$.

$$
\begin{aligned}
& |\vec{a} \times \vec{b}|=1 \\
& ||\vec{a}|| \vec{b}|\sin \theta \hat{n}|=1 \\
& |\vec{a}||\vec{b}||\sin \theta|=1 \\
& 3 \times \frac{\sqrt{2}}{3} \times \sin \theta=1 \\
& \sin \theta=\frac{1}{\sqrt{2}}
\end{aligned}
$$

$$
\theta=\frac{\pi}{4}
$$

Thus, $\vec{a} \times \vec{b}$ is a unit vector if the angle between \vec{a} and \vec{b} is $\frac{\pi}{4}$.
So, the correct answer is B.
12. Area of a rectangle having vertices A, B, C, and D with position
vectors $-\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}$ and $-\hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}$, respectively is
(A) $\frac{1}{2}$
(B) 1
(C) 2
(D) 4

Solution:
Explanation:

The position vectors of vertices A, B, C, and D of rectangle $A B C D$ are given as:
$\overrightarrow{\mathrm{OA}}=-\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \overrightarrow{\mathrm{OB}}=\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \overrightarrow{\mathrm{OC}}=\hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}, \overrightarrow{\mathrm{OD}}=-\hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}$
The adjacent sides $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{BC}}$ of the given rectangle are given as.
$\overrightarrow{\mathrm{AB}}=(1+1) \hat{i}+\left(\frac{1}{2}-\frac{1}{2}\right) \hat{j}+(4-4) \hat{k}=2 \hat{i}$
$\overrightarrow{\mathrm{BC}}=(1-1) \hat{i}+\left(-\frac{1}{2}-\frac{1}{2}\right) \hat{j}+(4-4) \hat{k}=-\hat{j}$
$\therefore \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & 0 \\ 0 & -1 & 0\end{array}\right|=\hat{k}(-2)=-2 \hat{k}$
$\Rightarrow|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}|=2$
We know that, the area of parallelogram whose adjacent sides are \vec{a} and \vec{b} is $|\vec{a} \times \vec{b}|$.
Thus, the area of the given rectangle is $|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}|=2$ square units.
So, the correct answer is C .

