

EXERCISE 10.4

PAGE NO: 454

1. Find
$$|\vec{a} \times \vec{b}|$$
, if $\vec{a} = \hat{i} - 7\hat{j} + 7\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$

Solution:

It is given that,

$$\vec{a} = \hat{i} - 7\hat{j} + 7\hat{k} \text{ and } \vec{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -7 & 7 \\ 3 & -2 & 2 \end{vmatrix}$$

$$= \hat{i} \left(-14 + 14 \right) - \hat{j} \left(2 - 21 \right) + \hat{k} \left(-2 + 21 \right) = 19\hat{j} + 19\hat{k}$$
Therefore,
$$|\vec{a} \times \vec{b}| = \sqrt{\left(19 \right)^2 + \left(19 \right)^2} = \sqrt{2 \times \left(19 \right)^2} = 19\sqrt{2}$$

2. Find a unit vector perpendicular to each of the vector $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$, where $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$

Solution:

It is given that,

$$\vec{a}=3\hat{i}+2\hat{j}+2\hat{k}$$
 and $\vec{b}=\hat{i}+2\hat{j}-2\hat{k}$
So, we have

$$\vec{a} + \vec{b} = 4\hat{i} + 4\hat{j}, \ \vec{a} - \vec{b} = 2\hat{i} + 4\hat{k}$$

$$\vec{a} + \vec{b} \times \vec{a} - \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 4 & 0 \\ 2 & 0 & 4 \end{vmatrix} = \hat{i} (16) - \hat{j} (16) + \hat{k} (-8) = 16\hat{i} - 16\hat{j} - 8\hat{k}$$

$$\begin{vmatrix} (\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) \end{vmatrix} = \sqrt{16^2 + (-16)^2 + (-8)^2}$$

$$= \sqrt{2^2 \times 8^2 + 2^2 \times 8^2 + 8^2}$$

$$= 8\sqrt{2^2 + 2^2 + 1} = 8\sqrt{9} = 8 \times 3 = 24$$

Therefore, the unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ is given by the relation,

$$= \pm \frac{\left(\vec{a} + \vec{b}\right) \times \left(\vec{a} - \vec{b}\right)}{\left|\left(\vec{a} + \vec{b}\right) \times \left(\vec{a} - \vec{b}\right)\right|} = \pm \frac{16\hat{i} - 16\hat{j} - 8\hat{k}}{24}$$
$$= \pm \frac{2\hat{i} - 2\hat{j} - \hat{k}}{3} = \pm \frac{2}{3}\hat{i} \mp \frac{2}{3}\hat{j} \mp \frac{1}{3}\hat{k}$$

3. If a unit vector \vec{a} makes an angles $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} , then find θ and hence, the compounds of a.

Solution:

First,

Let unit vector \vec{a} have (a_1, a_2, a_3) components.

$$\Rightarrow \vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$

As \vec{a} is a unit vector, $|\vec{a}| = 1$.

Also given, that $\frac{1}{a}$ makes angles $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with \hat{j} , and an acute angle θ with \hat{k} .

Then, we have

$$\cos\frac{\pi}{3} = \frac{a_1}{|\vec{a}|}$$

$$\Rightarrow \frac{1}{2} = a_1$$

$$[|\vec{a}|=1]$$

$$\cos\frac{\pi}{4} = \frac{a_2}{|\vec{a}|}$$

$$\Rightarrow \frac{1}{\sqrt{2}} = a_2$$
 $\left[\left| \vec{a} \right| = 1 \right]$

$$[|\vec{a}| = 1]$$

Also,
$$\cos \theta = \frac{a_3}{|\vec{a}|}$$
.
 $\Rightarrow a_3 = \cos \theta$

$$\Rightarrow a_3 = \cos \theta$$

$$|a|=1$$

$$\sqrt{{a_1}^2 + {a_2}^2 + {a_3}^2} = 1$$

$$\left(\frac{1}{2}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 + \cos^2\theta = 1$$

$$\frac{1}{4} + \frac{1}{2} + \cos^2 \theta = 1$$

$$\frac{3}{4} + \cos^2 \theta = 1$$

$$\cos^2 \theta = 1 - \frac{3}{4} = \frac{1}{4}$$

$$\cos \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$$

$$\therefore a_3 = \cos\frac{\pi}{3} = \frac{1}{2}$$

Thus,
$$\theta = \frac{\pi}{3}$$
 and the components of \vec{a} are $\left(\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2}\right)$

4. Show that

$$(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})$$

Solution:

First, consider the LHS,

We have

$$(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b})$$

$$= (\vec{a} - \vec{b}) \times \vec{a} + (\vec{a} - \vec{b}) \times \vec{b}$$
[By distributivity of vector product over addition]
$$= \vec{a} \times \vec{a} - \vec{b} \times \vec{a} + \vec{a} \times \vec{b} - \vec{b} \times \vec{b}$$
[Again, by distributivity of vector product over addition]
$$= \vec{0} + \vec{a} \times \vec{b} + \vec{a} \times \vec{b} - \vec{0}$$

$$= 2(\vec{a} \times \vec{b})$$

5. Find
$$\lambda$$
 and μ if $\left(2\hat{i}+6\hat{j}+27\hat{k}\right)\times\left(\hat{i}+\lambda\hat{j}+\mu\hat{k}\right)=\vec{0}$

Solution:

It is given that

Given,

$$\hat{i}(6\mu - 27\lambda) - \hat{j}(2\mu - 27) + \hat{k}(2\lambda - 6) = 0\hat{i} + 0\hat{j} + 0\hat{k}$$

On comparing the corresponding components, we have

$$6\mu - 27\lambda = 0$$

$$2\mu-27=0$$

$$2\lambda - 6 = 0$$

Now,

$$2\lambda - 6 = 0 \Rightarrow \lambda = 3$$
$$2\mu - 27 = 0 \Rightarrow \mu = \frac{27}{2}$$

Thus,
$$\lambda = 3$$
 and $\mu = \frac{27}{2}$.

6. Given that $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} \times \vec{b} = \vec{0}$. What can you conclude about the vectors \vec{a} and \vec{b} ? Solution:

It is given that,

$$\vec{a} \cdot \vec{b} = 0$$

Then,

(i) Either $|\vec{a}| = 0$ or $|\vec{b}| = 0$, or $\vec{a} \perp \vec{b}$ (in case \vec{a} and \vec{b} are non-zero) $\vec{a} \times \vec{b} = 0$

(ii) Either $|\vec{a}| = 0$ or $|\vec{b}| = 0$, or $\vec{a} \parallel \vec{b}$ (in case \vec{a} and \vec{b} are non-zero) But, \vec{a} and \vec{b} cannot be perpendicular and parallel simultaneously.

Therefore, $|\vec{a}| = 0$ or $|\vec{b}| = 0$.

7. Let the vectors \vec{a} , \vec{b} , \vec{c} given as $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, $c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$. Then show that $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$

Solution:

It is given that

$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}, \ \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}, \ \vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$$
$$(\vec{b} + \vec{c}) = (b_1 + c_1) \hat{i} + (b_2 + c_2) \hat{j} + (b_3 + c_3) \hat{k}$$

Now,
$$\vec{a} \times (\vec{b} + \vec{c})$$
 $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \end{vmatrix}$

$$=\hat{i}\left[a_{2}(b_{3}+c_{3})-a_{3}(b_{2}+c_{2})\right]-\hat{j}\left[a_{1}(b_{3}+c_{3})-a_{3}(b_{1}+c_{1})\right]+\hat{k}\left[a_{1}(b_{2}+c_{2})-a_{2}(b_{1}+c_{1})\right]$$

$$=\hat{i}\left[a_{2}b_{3}+a_{2}c_{3}-a_{3}b_{2}-a_{3}c_{2}\right]+\hat{j}\left[-a_{1}b_{3}-a_{1}c_{3}+a_{3}b_{1}+a_{3}c_{1}\right]+\hat{k}\left[a_{1}b_{2}+a_{1}c_{2}-a_{2}b_{1}-a_{2}c_{1}\right]...(1)$$

And,

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

$$= \hat{i} \left[a_2 b_3 - a_3 b_2 \right] + \hat{j} \left[b_1 a_3 - a_1 b_3 \right] + \hat{k} \left[a_1 b_2 - a_2 b_1 \right]$$

$$\vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
(2)

$$=\hat{i}\left[a_{2}c_{3}-a_{3}c_{2}\right]+\hat{j}\left[a_{3}c_{1}-a_{1}c_{3}\right]+\hat{k}\left[a_{1}c_{2}-a_{2}c_{1}\right]$$
(3)

On adding (2) and (3), we get

$$(\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c}) = \hat{i} [a_2b_3 + a_2c_3 - a_3b_2 - a_3c_2] + \hat{j} [b_1a_3 + a_3c_1 - a_1b_3 - a_1c_3] + \hat{k} [a_1b_2 + a_1c_2 - a_2b_1 - a_2c_1]$$
(4)

From (1) and (4), we obtain

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

- Hence proved.

8. If either $\vec{a} = \vec{0}$ or $\vec{b} = \vec{0}$, then $\vec{a} \times \vec{b} = \vec{0}$. Is the converse true? Justify your answer with an example.

Solution:

First, let us consider,

Take any parallel non-zero vectors so that $\vec{a} \times \vec{b} = \vec{0}$.

Let
$$\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$$
, $\vec{b} = 4\hat{i} + 6\hat{j} + 8\hat{k}$.

Then.

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 4 & 6 & 8 \end{vmatrix} = \hat{i} (24 - 24) - \hat{j} (16 - 16) + \hat{k} (12 - 12) = 0 \hat{i} + 0 \hat{j} + 0 \hat{k} = \vec{0}$$

Now, it's seen that

$$|\vec{a}| = \sqrt{2^2 + 3^2 + 4^2} = \sqrt{29}$$

$$\vec{a} \neq \vec{0}$$

$$|\vec{b}| = \sqrt{4^2 + 6^2 + 8^2} = \sqrt{116}$$

$$\vec{b} \neq \vec{0}$$

Thus, the converse of the given statement need not be true.

9. Find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5).

Solution:

We know

Given A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5) are the vertices of triangle ABC. The adjacent sides \overrightarrow{AB} and \overrightarrow{BC} of $\triangle ABC$ are given as:

$$\overrightarrow{AB} = (2-1)\hat{i} + (3-1)\hat{j} + (5-2)\hat{k} = \hat{i} + 2\hat{j} + 3\hat{k}$$

$$\overrightarrow{BC} = (1-2)\hat{i} + (5-3)\hat{j} + (5-5)\hat{k} = -\hat{i} + 2\hat{j}$$

Area of
$$\triangle ABC = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{BC}|$$

$$\overrightarrow{AB} \times \overrightarrow{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ -1 & 2 & 0 \end{vmatrix} = \hat{i}(-6) - \hat{j}(3) + \hat{k}(2+2) = -6\hat{i} - 3\hat{j} + 4\hat{k}$$
$$\therefore |\overrightarrow{AB} \times \overrightarrow{BC}| = \sqrt{(-6)^2 + (-3)^2 + 4^2} = \sqrt{36 + 9 + 16} = \sqrt{61}$$

$$|\overrightarrow{AB} \times \overrightarrow{BC}| = \sqrt{(-6)^2 + (-3)^2 + 4^2} = \sqrt{36 + 9 + 16} = \sqrt{61}$$

Therefore, the area of $\triangle ABC_{is} \frac{\sqrt{61}}{2}$ square units.

10. Find the area of the parallelogram whose adjacent sides are determined by the vector $\vec{a} = \hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$

Solution:

Let us consider,

The area of the parallelogram whose adjacent sides are \vec{a} and \vec{b} is $|\vec{a} \times \vec{b}|$. Now, the adjacent sides are given as:

$$\vec{a} = \hat{i} - \hat{j} + 3\hat{k}$$
 and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 3 \\ 2 & -7 & 1 \end{vmatrix} = \hat{i} (-1 + 21) - \hat{j} (1 - 6) + \hat{k} (-7 + 2) = 20\hat{i} + 5\hat{j} - 5\hat{k}$$
$$|\vec{a} \times \vec{b}| = \sqrt{20^2 + 5^2 + 5^2} = \sqrt{400 + 25 + 25} = 15\sqrt{2}$$

$$|\vec{a} \times \vec{b}| = \sqrt{20^2 + 5^2 + 5^2} = \sqrt{400 + 25 + 25} = 15\sqrt{2}$$

Therefore, the area of the given parallelogram is $15\sqrt{2}$ square units .

11. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}| = 3$ and $|\vec{b}| = \frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angle between a and b is (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

Solution:

Explanation:

Given,
$$|\vec{a}| = 3$$
 and $|\vec{b}| = \frac{\sqrt{2}}{3}$.

We know that $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin\theta \, \hat{n}$, where \hat{n} is a unit vector perpendicular to both \vec{a} and \vec{b} and θ is the angle between \vec{a} and \vec{b}

Now, $\vec{a} \times \vec{b}$ is a unit vector if $|\vec{a} \times \vec{b}| = 1$.

$$\left| \vec{a} \times \vec{b} \right| = 1$$

 $\left| |\vec{a}| \left| |\vec{b}| \sin \theta \, \hat{n} \right| = 1$

$$|\vec{a}||\vec{b}||\sin\theta| = 1$$

$$3 \times \frac{\sqrt{2}}{3} \times \sin \theta = 1$$

$$\sin\theta = \frac{1}{\sqrt{2}}$$

$$\theta = \frac{\pi}{4}$$

Thus, $\vec{a} \times \vec{b}$ is a unit vector if the angle between \vec{a} and \vec{b} is $\frac{\pi}{4}$. So, the correct answer is B.

12. Area of a rectangle having vertices A, B, C, and D with position

vectors $-\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}$, $\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}$, $\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$ and $-\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$, respectively is

(A)
$$\frac{1}{2}$$

Solution:

Explanation:

NCERT Solutions for Class 12 Maths Chapter 10 – Vector Algebra

The position vectors of vertices A, B, C, and D of rectangle ABCD are given as:

$$\overrightarrow{\mathrm{OA}} = -\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \ \overrightarrow{\mathrm{OB}} = \hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \ \overrightarrow{\mathrm{OC}} = \hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}, \ \overrightarrow{\mathrm{OD}} = -\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$$

The adjacent sides \overrightarrow{AB} and \overrightarrow{BC} of the given rectangle are given as.

$$\overrightarrow{AB} = (1+1)\hat{i} + (\frac{1}{2} - \frac{1}{2})\hat{j} + (4-4)\hat{k} = 2\hat{i}$$

$$\overrightarrow{BC} = (1-1)\hat{i} + \left(-\frac{1}{2} - \frac{1}{2}\right)\hat{j} + (4-4)\hat{k} = -\hat{j}$$

$$\therefore \overrightarrow{AB} \times \overrightarrow{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & 0 \\ 0 & -1 & 0 \end{vmatrix} = \hat{k}(-2) = -2\hat{k}$$

$$\Rightarrow \left|\overrightarrow{AB} \times \overrightarrow{BC}\right| = 2$$

We know that, the area of parallelogram whose adjacent sides are \vec{a} and \vec{b} is $|\vec{a} \times \vec{b}|$.

Thus, the area of the given rectangle is $|\overrightarrow{AB} \times \overrightarrow{BC}| = 2$ square units. So, the correct answer is C.