## MISCELLANEOUS EXERCISE

1. Write down a unit vector in XY-plane, making an angle of $30^{\circ}$ with the positive direction of the $x$-axis.

## Solution:

Let us consider,
If $\vec{r}$ is a unit vector in the XY-plane, then $\vec{r}=\cos \theta \hat{i}+\sin \theta \hat{j}$.
Here, $\theta$ is the angle made by the unit vector with the positive direction of the $x$-axis.
Hence, for $\theta=30^{\circ}$ we have:
$\vec{r}=\cos 30^{\circ} \hat{i}+\sin 30^{\circ} \hat{j}=\frac{\sqrt{3}}{2} \hat{i}+\frac{1}{2} \hat{j}$
Therefore, the required unit vector is $\frac{\sqrt{3}}{2} \hat{i}+\frac{1}{2} \hat{j}$
2. Find the scalar components and magnitude of the vector joining the points $\mathbf{P}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1}\right)$ and $\mathbf{Q}\left(\mathbf{x}_{2}, \mathbf{y}_{2}, \mathbf{z}_{2}\right)$.

## Solution:

First, let us consider,
The vector joining the points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$ can be found out by:
$\overrightarrow{\mathrm{PQ}}=$ Position vector of $\mathrm{Q}-$ Position vector of P

$$
\begin{gathered}
=\left(x_{2}-x_{1}\right) \hat{i}+\left(y_{2}-y_{1}\right) \hat{j}+\left(z_{2}-z_{1}\right) \hat{k} \\
|\overrightarrow{\mathrm{PQ}}|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
\end{gathered}
$$

Therefore, the scalar components and the magnitude of the vector joining the given points are respectively
$\left\{\left(x_{2}-x_{1}\right),\left(y_{2}-y_{1}\right),\left(z_{2}-z_{1}\right)\right\}$ and $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$
3. A girl walks 4 km towards west, then she walks 3 km in a direction $30^{\circ}$ east of north and stops. Determine the girl's displacement from her initial point of departure.

## Solution:

It is given that
Let $O$ and $B$ be the initial and final positions of the girl, respectively.
Then, the girl's position can be shown as


$$
\begin{aligned}
\overrightarrow{\mathrm{OA}} & =-4 \hat{i} \\
\overrightarrow{\mathrm{AB}} & =\hat{i}|\overrightarrow{\mathrm{AB}}| \cos 60^{\circ}+\hat{j}|\overrightarrow{\mathrm{AB}}| \sin 60^{\circ} \\
& =\hat{i} 3 \times \frac{1}{2}+\hat{j} 3 \times \frac{\sqrt{3}}{2} \\
& =\frac{3}{2} \hat{i}+\frac{3 \sqrt{3}}{2} \hat{j}
\end{aligned}
$$

By the Triangle law of vector addition, we have

$$
\begin{aligned}
\overrightarrow{\mathrm{OB}} & =\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AB}} \\
& =(-4 \hat{i})+\left(\frac{3}{2} \hat{i}+\frac{3 \sqrt{3}}{2} \hat{j}\right) \\
& =\left(-4+\frac{3}{2}\right) \hat{i}+\frac{3 \sqrt{3}}{2} \hat{j} \\
& =\left(\frac{-8+3}{2}\right) \hat{i}+\frac{3 \sqrt{3}}{2} \hat{j} \\
& =\frac{-5}{2} \hat{i}+\frac{3 \sqrt{3}}{2} \hat{j}
\end{aligned}
$$

Therefore, the girl's displacement from her initial point of departure is $\frac{-5}{2} \hat{i}+\frac{3 \sqrt{3}}{2} \hat{j}$.

4. If $\vec{a}=\vec{b}+\vec{c}$, then, is it true that $|\vec{a}|=|\vec{b}|+|\vec{c}|$ ? Justify
your answer.
Solution:
It is given that,
In $\triangle \mathrm{ABC}$, let $\overrightarrow{\mathrm{CB}}=\vec{a}, \overrightarrow{\mathrm{CA}}=\vec{b}$, and $\overrightarrow{\mathrm{AB}}=\vec{c}$ (as shown in the following figure).
So, by the Triangle law of vector addition, we have $\vec{a}=\vec{b}+\vec{c}$.
And, we know that $|\vec{a}|,|\vec{b}|$, and $|\vec{c}|$ represent the sides of $\triangle \mathrm{ABC}$.
Also, it is known that the sum of the lengths of any two sides of a triangle is greater than the third side.
$\therefore|\vec{a}|<|\vec{b}|+|\vec{c}|$
Therefore, it is not true that $|\vec{a}|=|\vec{b}|+|\vec{c}|$.
5. Find the value of $x$ for which $x(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.

Solution:
We know,

Given $x(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.
So, $|x(\hat{i}+\hat{j}+\hat{k})|=1$.
Now,

$$
\begin{aligned}
& |x(\hat{i}+\hat{j}+\hat{k})|=1 \\
& \sqrt{x^{2}+x^{2}+x^{2}}=1 \\
& \sqrt{3 x^{2}}=1 \\
& \sqrt{3} x=1 \\
& x= \pm \frac{1}{\sqrt{3}}
\end{aligned}
$$

Therefore, the required value of $x$ is $\pm \frac{1}{\sqrt{3}}$
6. Find a vector of magnitude 5 units, and parallel to the resultant of the vectors
$\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$
Solution:
Let us consider that the
Given vectors,
$\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$
Let $\vec{c}$ be the resultant of $\vec{a}$ and $\vec{b}$.
Then,

$$
\begin{aligned}
& \vec{c}=\vec{a}+\vec{b}=(2+1) \hat{i}+(3-2) \hat{j}+(-1+1) \hat{k}=3 \hat{i}+\hat{j} \\
&|\vec{c}|=\sqrt{3^{2}+1^{2}}=\sqrt{9+1}=\sqrt{10} \\
& \therefore \hat{c}=\frac{\vec{c}}{|\vec{c}|}=\frac{(3 \hat{i}+\hat{j})}{\sqrt{10}}
\end{aligned}
$$

Therefore, the vector of magnitude 5 units and parallel to the resultant of vectors $\vec{a}$ and $\vec{b}$ is $\pm 5 \cdot \hat{c}= \pm 5 \cdot \frac{1}{\sqrt{10}}(3 \hat{i}+\hat{j})= \pm \frac{3 \sqrt{10} \hat{i}}{2} \pm \frac{\sqrt{10}}{2} \hat{j}$.
7. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$, find a unit vector parallel to the vector $2 \vec{a}-\vec{b}+3 \vec{c}$.

## Solution:

Let us consider the given vectors,

Given,

$$
\begin{aligned}
& \vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+3 \hat{k} \text { and } \vec{c}=\hat{i}-2 \hat{j}+\hat{k} \\
& 2 \vec{a}-\vec{b}+3 \vec{c}=2(\hat{i}+\hat{j}+\hat{k})-(2 \hat{i}-\hat{j}+3 \hat{k})+3(\hat{i}-2 \hat{j}+\hat{k}) \\
& =2 \hat{i}+2 \hat{j}+2 \hat{k}-2 \hat{i}+\hat{j}-3 \hat{k}+3 \hat{i}-6 \hat{j}+3 \hat{k} \\
& =3 \hat{i}-3 \hat{j}+2 \hat{k} \\
& |2 \vec{a}-\vec{b}+3 \vec{c}|=\sqrt{3^{2}+(-3)^{2}+2^{2}}=\sqrt{9+9+4}=\sqrt{22}
\end{aligned}
$$

Therefore, the unit vector along $2 \vec{a}-\vec{b}+3 \vec{c}$ is
$\frac{2 \vec{a}-\vec{b}+3 \vec{c}}{|2 \vec{a}-\vec{b}+3 \vec{c}|}=\frac{3 \hat{i}-3 \hat{j}+2 \hat{k}}{\sqrt{22}}=\frac{3}{\sqrt{22}} \hat{i}-\frac{3}{\sqrt{22}} \hat{j}+\frac{2}{\sqrt{22}} \hat{k}$.
8. Show that the points $A(1,-2,-8), B(5,0,-2)$ and $C(11,3,7)$ are collinear, and find the ratio in which $B$ divides AC.

## Solution:

First, let us consider,

Given points are: $\mathrm{A}(1,-2,-8), \mathrm{B}(5,0,-2)$, and $\mathrm{C}(11,3,7)$.
$\therefore \overrightarrow{\mathrm{AB}}=(5-1) \hat{i}+(0+2) \hat{j}+(-2+8) \hat{k}=4 \hat{i}+2 \hat{j}+6 \hat{k}$
$\stackrel{\rightharpoonup}{\mathrm{BC}}=(11-5) \hat{i}+(3-0) \hat{j}+(7+2) \hat{k}=6 \hat{i}+3 \hat{j}+9 \hat{k}$
$\overrightarrow{\mathrm{AC}}=(11-1) \hat{i}+(3+2) \hat{j}+(7+8) \hat{k}=10 \hat{i}+5 \hat{j}+15 \hat{k}$
$|\overrightarrow{\mathrm{AB}}|=\sqrt{4^{2}+2^{2}+6^{2}}=\sqrt{16+4+36}=\sqrt{56}=2 \sqrt{14}$
$|\overrightarrow{\mathrm{BC}}|=\sqrt{6^{2}+3^{2}+9^{2}}=\sqrt{36+9+81}=\sqrt{126}=3 \sqrt{14}$
$|\overrightarrow{\mathrm{AC}}|=\sqrt{10^{2}+5^{2}+15^{2}}=\sqrt{100+25+225}=\sqrt{350}=5 \sqrt{14}$
$\therefore|\overrightarrow{\mathrm{AC}}|=|\overrightarrow{\mathrm{AB}}|+|\overrightarrow{\mathrm{BC}}|$
Therefore, the given points $\mathrm{A}, \mathrm{B}$, and C are collinear.
Now, let point $B$ divide $A C$ in the ratio $\lambda: 1$. So, we have:
$\overrightarrow{\mathrm{OB}}=\frac{\lambda \overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{OA}}}{(\lambda+1)}$
$5 \hat{i}-2 \hat{k}=\frac{\lambda(11 \hat{i}+3 \hat{j}+7 \hat{k})+(\hat{i}-2 \hat{j}-8 \hat{k})}{\lambda+1}$
$(\lambda+1)(5 \hat{i}-2 \hat{k})=11 \lambda \hat{i}+3 \lambda \hat{j}+7 \lambda \hat{k}+\hat{i}-2 \hat{j}-8 \hat{k}$
$5(\lambda+1) \hat{i}-2(\lambda+1) \hat{k}=(11 \lambda+1) \hat{i}+(3 \lambda-2) \hat{j}+(7 \lambda-8) \hat{k}$
On equating the corresponding components, we have:
$5(\lambda+1)=11 \lambda+1$
$5 \lambda+5=11 \lambda+1$
$6 \lambda=4$
$\lambda=\frac{4}{6}=\frac{2}{3}$
Therefore, point $B$ divides $A C$ in the ratio $2: 3$.

Given points are: $A(1,-2,-8), B(5,0,-2)$, and $C(11,3,7)$.
$\therefore \overrightarrow{\mathrm{AB}}=(5-1) \hat{i}+(0+2) \hat{j}+(-2+8) \hat{k}=4 \hat{i}+2 \hat{j}+6 \hat{k}$
$\stackrel{\rightharpoonup}{\mathrm{BC}}=(11-5) \hat{i}+(3-0) \hat{j}+(7+2) \hat{k}=6 \hat{i}+3 \hat{j}+9 \hat{k}$
$\overrightarrow{\mathrm{AC}}=(11-1) \hat{i}+(3+2) \hat{j}+(7+8) \hat{k}=10 \hat{i}+5 \hat{j}+15 \hat{k}$
$|\overrightarrow{\mathrm{AB}}|=\sqrt{4^{2}+2^{2}+6^{2}}=\sqrt{16+4+36}=\sqrt{56}=2 \sqrt{14}$
$|\overrightarrow{\mathrm{BC}}|=\sqrt{6^{2}+3^{2}+9^{2}}=\sqrt{36+9+81}=\sqrt{126}=3 \sqrt{14}$
$|\overrightarrow{\mathrm{AC}}|=\sqrt{10^{2}+5^{2}+15^{2}}=\sqrt{100+25+225}=\sqrt{350}=5 \sqrt{14}$
$\therefore|\overrightarrow{\mathrm{AC}}|=|\overrightarrow{\mathrm{AB}}|+|\overrightarrow{\mathrm{BC}}|$
Therefore, the given points $A, B$, and $C$ are collinear.
Now, let point $B$ divide $A C$ in the ratio $\lambda: 1$. So, we have:
$\overrightarrow{\mathrm{OB}}=\frac{\lambda \overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{OA}}}{(\lambda+1)}$
$5 \hat{i}-2 \hat{k}=\frac{\lambda(11 \hat{i}+3 \hat{j}+7 \hat{k})+(\hat{i}-2 \hat{j}-8 \hat{k})}{\lambda+1}$
$(\lambda+1)(5 \hat{i}-2 \hat{k})=11 \lambda \hat{i}+3 \lambda \hat{j}+7 \lambda \hat{k}+\hat{i}-2 \hat{j}-8 \hat{k}$
$5(\lambda+1) \hat{i}-2(\lambda+1) \hat{k}=(11 \lambda+1) \hat{i}+(3 \lambda-2) \hat{j}+(7 \lambda-8) \hat{k}$
On equating the corresponding components, we have:
$5(\lambda+1)=11 \lambda+1$
$5 \lambda+5=11 \lambda+1$
$6 \lambda=4$
$\lambda=\frac{4}{6}=\frac{2}{3}$
Therefore, point $B$ divides $A C$ in the ratio $2: 3$.
9. Find the position vector of a point $R$, which divides the line joining two points $P$ and $Q$, whose position vectors are $^{(2 \vec{a}+\vec{b}) \text { and }(\vec{a}-3 \vec{b})}$ externally in the ratio 1:2. Also, show that $P$ is the midpoint of the line segment $R Q$.

Solution:

We know,

Given $_{\sim} \overrightarrow{\mathrm{OP}}=2 \vec{a}+\vec{b}, \overrightarrow{\mathrm{OQ}}=\vec{a}-3 \vec{b}$.
Also, given that point $R$ divides a line segment joining two points $P$ and $Q$ externally in the ratio 1:2. So, on using the section formula, we have

$$
\overrightarrow{\mathrm{OR}}=\frac{2(2 \vec{a}+\vec{b})-(\vec{a}-3 \vec{b})}{2-1}=\frac{4 \vec{a}+2 \vec{b}-\vec{a}+3 \vec{b}}{1}=3 \vec{a}+5 \vec{b}
$$

Hence, the position vector of point R is $3 \vec{a}+5 \vec{b}$.
Now,
Position vector of the mid-point of $\mathrm{RQ}=\frac{\overrightarrow{\mathrm{OQ}}+\overrightarrow{\mathrm{OR}}}{2}$

$$
\begin{aligned}
& =\frac{(\vec{a}-3 \vec{b})+(3 \vec{a}+5 \vec{b})}{2} \\
& =2 \vec{a}+\vec{b} \\
& =\overrightarrow{\mathrm{OP}}
\end{aligned}
$$

Therefore, $P$ is the mid-point of the line segment RQ.
10. The two adjacent sides of a parallelogram are $2 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\hat{i}-2 \hat{j}-3 \hat{k}$.

Find the unit vector parallel to its diagonal. Also, find its area.

## Solution:

First, let us consider,

Adjacent sides of a parallelogram are given as: $\vec{a}=2 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}-3 \hat{k}$
We know that, the diagonal of a parallelogram is given by $\vec{a}+\vec{b}$.
$\vec{a}+\vec{b}=(2+1) \hat{i}+(-4-2) \hat{j}+(5-3) \hat{k}=3 \hat{i}-6 \hat{j}+2 \hat{k}$
Hence, the unit vector parallel to the diagonal is
$\frac{\vec{a}+\vec{b}}{|\vec{a}+\vec{b}|}=\frac{3 \hat{i}-6 \hat{j}+2 \hat{k}}{\sqrt{3^{2}+(-6)^{2}+2^{2}}}=\frac{3 \hat{i}-6 \hat{j}+2 \hat{k}}{\sqrt{9+36+4}}=\frac{3 \hat{i}-6 \hat{j}+2 \hat{k}}{7}=\frac{3}{7} \hat{i}-\frac{6}{7} \hat{j}+\frac{2}{7} \hat{k}$.
So, the area of parallelogram $\mathrm{ABCD}=|\vec{a} \times \vec{b}|$

$$
\begin{aligned}
& \vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & -4 & 5 \\
1 & -2 & -3
\end{array}\right| \\
&=\hat{i}(12+10)-\hat{j}(-6-5)+\hat{k}(-4+4) \\
&=22 \hat{i}+11 \hat{j} \\
&=11(2 \hat{i}+\hat{j}) \\
& \therefore|\vec{a} \times \vec{b}|=11 \sqrt{2^{2}+1^{2}}=11 \sqrt{5}
\end{aligned}
$$

Therefore, the area of the parallelogram is $11 \sqrt{5}$ square units.

Adjacent sides of a parallelogram are given as: $\vec{a}=2 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}-3 \hat{k}$
We know that, the diagonal of a parallelogram is given by $\vec{a}+\vec{b}$.

$$
\vec{a}+\vec{b}=(2+1) \hat{i}+(-4-2) \hat{j}+(5-3) \hat{k}=3 \hat{i}-6 \hat{j}+2 \hat{k}
$$

Hence, the unit vector parallel to the diagonal is

$$
\frac{\vec{a}+\vec{b}}{|\vec{a}+\vec{b}|}=\frac{3 \hat{i}-6 \hat{j}+2 \hat{k}}{\sqrt{3^{2}+(-6)^{2}+2^{2}}}=\frac{3 \hat{i}-6 \hat{j}+2 \hat{k}}{\sqrt{9+36+4}}=\frac{3 \hat{i}-6 \hat{j}+2 \hat{k}}{7}=\frac{3}{7} \hat{i}-\frac{6}{7} \hat{j}+\frac{2}{7} \hat{k} .
$$

So, the area of parallelogram $\mathrm{ABCD}=|\vec{a} \times \vec{b}|$

$$
\begin{aligned}
& \vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & -4 & 5 \\
1 & -2 & -3
\end{array}\right| \\
& =\hat{i}(12+10)-\hat{j}(-6-5)+\hat{k}(-4+4) \\
& =22 \hat{i}+11 \hat{j} \\
& =11(2 \hat{i}+\hat{j}) \\
& \therefore|\vec{a} \times \vec{b}|=11 \sqrt{2^{2}+1^{2}}=11 \sqrt{5}
\end{aligned}
$$

Therefore, the area of the parallelogram is $11 \sqrt{5}$ square units.
11. Show that the direction cosines of a vector equally inclined to the axes $\mathrm{OX}, \mathrm{OY}$ and OZ are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$.

## Solution:

First,
Let's assume a vector to be equally inclined to axes OX, OY, and OZ at angle $\alpha$.
Then, the direction cosines of the vector are $\cos \alpha, \cos \alpha$, and $\cos \alpha$.
Now, we know that

$$
\begin{aligned}
& \cos ^{2} \alpha+\cos ^{2} \alpha+\cos ^{2} \alpha=1 \\
& 3 \cos ^{2} \alpha=1 \\
& \cos \alpha=\frac{1}{\sqrt{3}}
\end{aligned}
$$

Therefore, the direction cosines of the vector, which are equally inclined to the axes, are
$\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
Hence, proved.
12. Let ${ }^{\vec{a}}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and ${ }^{\vec{c}}=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector $\vec{d}$ which is perpendicular to both $\vec{a}$ and $\vec{b}$, and $\vec{c} \cdot \vec{d}=15$.

Solution:

Assume,
Let $\vec{d}=d_{1} \hat{i}+d_{2} \hat{j}+d_{3} \hat{k}$.
As $\vec{d}$ is perpendicular to both $\vec{a}$ and $\vec{b}$, we have:
$\vec{d} \cdot \vec{a}=0$
$d_{1}+4 d_{2}+2 d_{3}=0$
And,
$\vec{d} \cdot \vec{b}=0$
$3 d_{1}-2 d_{2}+7 d_{3}=0$
Also, given that:
$\vec{c} \cdot \vec{d}=15$
$2 d_{1}-d_{2}+4 d_{3}=15$
On solving (i), (ii), and (iii), we obtain
$d_{1}=\frac{160}{3}, d_{2}=-\frac{5}{3}$ and $d_{3}=-\frac{70}{3}$
$\therefore \vec{d}=\frac{160}{3} \hat{i}-\frac{5}{3} \hat{j}-\frac{70}{3} \hat{k}=\frac{1}{3}(160 \hat{i}-5 \hat{j}-70 \hat{k})$
Therefore, the required vector is $\frac{1}{3}(160 \hat{i}-5 \hat{j}-70 \hat{k})$

Let $\vec{d}=d_{1} \hat{i}+d_{2} \hat{j}+d_{3} \hat{k}$.
As $\vec{d}$ is perpendicular to both $\vec{a}$ and $\vec{b}$, we have:
$\vec{d} \cdot \vec{a}=0$
$d_{1}+4 d_{2}+2 d_{3}=0$
And,
$\vec{d} \cdot \vec{b}=0$
$3 d_{1}-2 d_{2}+7 d_{3}=0$
Also, given that:
$\vec{c} \cdot \vec{d}=15$
$2 d_{1}-d_{2}+4 d_{3}=15$
On solving (i), (ii), and (iii), we obtain
$d_{1}=\frac{160}{3}, d_{2}=-\frac{5}{3}$ and $d_{3}=-\frac{70}{3}$
$\therefore \vec{d}=\frac{160}{3} \hat{i}-\frac{5}{3} \hat{j}-\frac{70}{3} \hat{k}=\frac{1}{3}(160 \hat{i}-5 \hat{j}-70 \hat{k})$
Therefore, the required vector is $\frac{1}{3}(160 \hat{i}-5 \hat{j}-70 \hat{k})$
13. The scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of vectors $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to one. Find the value of $\lambda$.

Solution:
Let's consider the

Sum of the given vectors is given by,
$(2 \hat{i}+4 \hat{j}-5 \hat{k})+(\lambda \hat{i}+2 \hat{j}+3 \hat{k})$
$=(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k}$
Hence, unit vector along $(2 \hat{i}+4 \hat{j}-5 \hat{k})+(\lambda \hat{i}+2 \hat{j}+3 \hat{k})$ is given as:
$\frac{(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{(2+\lambda)^{2}+6^{2}+(-2)^{2}}}=\frac{(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{4+4 \lambda+\lambda^{2}+36+4}}=\frac{(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{\lambda^{2}+4 \lambda+44}}$
Scalar product of $(\hat{i}+\hat{j}+\hat{k})$ with this unit vector is 1 .
$(\hat{i}+\hat{j}+\hat{k}) \cdot \frac{(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{\lambda^{2}+4 \lambda+44}}=1$
$\frac{(2+\lambda)+6-2}{\sqrt{\lambda^{2}+4 \lambda+44}}=1$
$\sqrt{\lambda^{2}+4 \lambda+44}=\lambda+6$
$\lambda^{2}+4 \lambda+44=(\lambda+6)^{2}$
$\lambda^{2}+4 \lambda+44=\lambda^{2}+12 \lambda+36$
$8 \lambda=8$
$\lambda=1$
Therefore, the value of A is 1 .
14. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to $\vec{a}, \vec{b}$ and $\vec{c}$.

Solution:
Let's assume,

As $\vec{a} \cdot \vec{b}$. and $\vec{c}$ are mutually perpendicular vectors, we have

$$
\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0 .
$$

## Given that:

$|\vec{a}|=|\vec{b}|=|\vec{c}|$
Let vector $\vec{a}+\vec{b}+\vec{c}$ be inclined to $\vec{a}, \vec{b}$, and $\vec{c}$ at angles $\theta_{1}, \theta_{2}$, and $\theta_{3}$ respectively.
So. we have

$$
\begin{aligned}
& \cos \theta_{1}=\frac{(\vec{a}+\vec{b}+\vec{c}) \cdot \vec{a}}{|\vec{a}+\vec{b}+\vec{c}||\vec{a}|}=\frac{\vec{a} \cdot \vec{a}+\vec{b} \cdot \vec{a}+\vec{c} \cdot \vec{a}}{|\vec{a}+\vec{b}+\vec{c}||\vec{a}|} \\
&=\frac{|\vec{a}|^{2}}{|\vec{a}+\vec{b}+\vec{c}||\vec{a}|} \quad \quad[\vec{b} \cdot \vec{a}=\vec{c} \cdot \vec{a}=0] \\
&=\frac{|\vec{a}|}{|\vec{a}+\vec{b}+\vec{c}|} \\
& \cos \theta_{2}=\frac{(\vec{a}+\vec{b}+\vec{c}) \cdot \vec{b}}{|\vec{a}+\vec{b}+\vec{c}| \vec{b} \mid}=\frac{\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{b}+\vec{c} \cdot \vec{b}}{|\vec{a}+\vec{b}+\vec{c}| \cdot|\vec{b}|} \\
&\left.=\frac{|\vec{b}|^{2}}{|\vec{a}+\vec{b}+\vec{c}| \cdot|\vec{b}|}=\vec{c} \cdot \vec{b}=0\right] \\
&=\frac{|\vec{b}|}{|\vec{a}+\vec{b}+\vec{c}|} \\
& \cos \theta_{3}=\frac{(\vec{a}+\vec{b}+\vec{c}) \cdot \vec{c}}{|\vec{a}+\vec{b}+\vec{c}||\vec{c}|}=\frac{\vec{a} \cdot \vec{c}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{c}}{|\vec{a}+\vec{b}+\vec{c}||\vec{c}|} \\
&=\frac{|\vec{c}|^{2}}{|\vec{a}+\vec{b}+\vec{c}||\vec{c}|} \\
&=\frac{|\vec{a}|}{|\vec{a}+\vec{b}+\vec{c}|} \\
&\mid \quad \vec{b} \cdot \vec{c}=0]
\end{aligned}
$$

Now, as $|\vec{a}|=|\vec{b}|=|\vec{c}|, \cos \theta_{1}=\cos \theta_{2}=\cos \theta_{3}$.
$\therefore \theta_{1}=\theta_{2}=\theta_{3}$
Therefore, the vector $(\vec{a}+\vec{b}+\vec{c})$ is equally inclined to $\vec{a}, \vec{b}$, and $\vec{c}$.
Hence proved.
15. Prove that $(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=|\vec{a}|^{2}+|\vec{b}|^{2}$, if and only if $\vec{a}, \vec{b}$ are perpendicular, given $\vec{a} \neq \overrightarrow{0}, \vec{b} \neq \overrightarrow{0}$.

Solution:

It is given that
Required to prove:
$(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=|\vec{a}|^{2}+|\vec{b}|^{2}$
$\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}=|\vec{a}|^{2}+|\vec{b}|^{2} \quad$ [Distributivity of scalar products over addition]
$|\vec{a}|^{2}+2 \vec{a} \cdot \vec{b}+|\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2} \quad[\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$ (Scalar product is commutative) $]$
$2 \vec{a} \cdot \vec{b}=0$
$\vec{a} \cdot \vec{b}=0$
Therefore, $\vec{a}$ and $\vec{b}$ are perpendicular. $\quad[\vec{a} \neq \overrightarrow{0}, \vec{b} \neq \overrightarrow{0}$ (Given) $]$
Hence, proved.
16. If $\theta$ is the angle between two vectors ${ }^{\vec{a}}$ and $\vec{b}$, then $\vec{a} \vec{b} \geq 0$ only when
(A) $0<\theta<\frac{\pi}{2}$
(B)
$0 \leq \theta \leq \frac{\pi}{2}$
(C) $0<\theta<\pi$
(D) $0 \leq \theta \leq \pi$

Solution:
Explanation:
Let's assume $\theta$ to be the angle between two vectors $\vec{a}$ and $\vec{b}$.
Then, without loss of generality, $\vec{a}$ and $\vec{b}$ are non-zero vectors so that $|\vec{a}|$ and $|\vec{b}|$ are positive We also know, $\quad \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$
So,

$$
\begin{aligned}
& \vec{a} \cdot \vec{b} \geq 0 \\
& |\vec{a}||\vec{b}| \cos \theta \geq 0
\end{aligned}
$$

$$
\cos \theta \geq 0 \quad[|\vec{a}| \text { and }|\vec{b}| \text { are positive }]
$$

$$
0 \leq \theta \leq \frac{\pi}{2}
$$

Therefore, $\vec{a} \cdot \vec{b} \geq 0$ when $0 \leq \theta \leq \frac{\pi}{2}$.
The correct answer is B.
17. Let ${ }^{\vec{a}}$ and $\vec{b}$ be two unit vectors and $\theta$ is the angle between them. Then $\vec{a}+\vec{b}$ is a unit vector if
(A) $\theta=\frac{\pi}{4}$
(B) $\theta=\frac{\pi}{3}$
(C) $\theta=\frac{\pi}{2}$
(D) $\theta=\frac{2 \pi}{3}$

## Solution:

Explanation:
Let $\vec{a}$ and $\vec{b}$ be two unit vectors and $\theta$ be the angle between them.
Then, $|\vec{a}|=|\vec{b}|=1$.
Now, $\vec{a}+\vec{b}$ is a unit vector if $|\vec{a}+\vec{b}|=1$.
$|\vec{a}+\vec{b}|=1$
$(\vec{a}+\vec{b})^{2}=1$
$(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=1$
$\vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}=1$
$|\vec{a}|^{2}+2 \vec{a} \cdot \vec{b}+|\vec{b}|^{2}=1$
$1^{2}+2|\vec{a}||\vec{b}| \cos \theta+1^{2}=1$
$1+2 \cdot 1 \cdot 1 \cos \theta+1=1$
$\cos \theta=-\frac{1}{2}$
$\theta=\frac{2 \pi}{3}$
Therefore, $\vec{a}+\vec{b}$ is a unit vector if $\theta=\frac{2 \pi}{3}$.
Hence the correct answer is D.
18. The value of $\hat{i} \cdot(\hat{j} \times \hat{k})+\hat{j} \cdot(\hat{i} \times \hat{k})+\hat{k} \cdot(\hat{i} \times \hat{j})$ is
(A) $\mathbf{0}$ (B) $\mathbf{- 1}$ (C) $\mathbf{1}$ (D) $\mathbf{3}$

Solution:
Explanation:
It is given that,
$\hat{i} \cdot(\hat{j} \times \hat{k})+\hat{j} \cdot(\hat{i} \times \hat{k})+\hat{k} \cdot(\hat{i} \times \hat{j})$
$=\hat{i} \cdot \hat{i}+\hat{j} \cdot(-\hat{j})+\hat{k} \cdot \hat{k}$
$=1-\hat{j} \cdot \hat{j}+1$
$=1-1+1$
$=1$
Hence, the correct answer is C.
19. If $\theta$ is the angle between any two vectors $\vec{a}$ and $\vec{b}$, then $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$ when $\theta$ is equal to
(A) 0
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{2}$
(D) $\pi$

Solution:
Explanation:
Let $\theta$ be the angle between two vectors $\vec{a}$ and $\vec{b}$.
Then, without loss of generality, $\vec{a}$ and $\vec{b}$ are non-zero vectors, so that $|\vec{a}|$ and $|\vec{b}|$ are positive.
$|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$
$|\vec{a}||\vec{b}| \cos \theta=|\vec{a}||\vec{b}| \sin \theta$
$\cos \theta=\sin \theta \quad[|\vec{a}|$ and $|\vec{b}|$ are positive $]$
$\tan \theta=1$
$\theta=\frac{\pi}{4}$
Thus, $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$ when $\theta$ isequal to $\frac{\pi}{4}$
So, the correct answer is B.

