EXERCISE 11.2

1. Show that the three lines with direction cosines

$$
\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13} ; \frac{4}{13}, \frac{12}{13}, \frac{3}{13} ; \frac{3}{13}, \frac{-4}{13}, \frac{12}{13}
$$

Are mutually perpendicular.

Solution:

Let us consider the direction cosines of L_{1}, L_{2} and L_{3} be $1_{1}, m_{1}, n_{1} ; 1_{2}, m_{2}, n_{2}$ and $1_{3}, m_{3}, n_{3}$.
We know that
If $1_{1}, m_{1}, n_{1}$ and l_{2}, m_{2}, n_{2} are the direction cosines of two lines,
And θ is the acute angle between the two lines,
Then $\cos \theta=\left|1_{1} 1_{2}+m_{1} m_{2}+n_{1} n_{2}\right|$
If two lines are perpendicular, then the angle between the two is $\theta=90^{\circ}$
For perpendicular lines, $\left|l_{1} 1_{2}+m_{1} m_{2}+n_{1} n_{2}\right|=\cos 90^{\circ}=0$, i.e. $\left|1_{1} 1_{2}+m_{1} m_{2}+n_{1} n_{2}\right|=0$
So, in order to check if the three lines are mutually perpendicular, we compute $\left|l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right|$ for all the pairs of the three lines.

Firstly let us compute, $\left|\mathrm{l}_{1} \mathrm{l}_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right|$

$$
\begin{aligned}
& \left|1_{1} 1_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right|=\left|\left(\frac{12}{13} \times \frac{4}{13}\right)+\left(\frac{-3}{13} \times \frac{12}{13}\right)+\left(\frac{-4}{13} \times \frac{3}{13}\right)\right|=\frac{48}{13}+\left(\frac{-36}{13}\right)+\left(\frac{-12}{13}\right) \\
& =\frac{48+(-48)}{13}=0
\end{aligned}
$$

So, $L_{1} \perp \mathrm{~L}_{2} \ldots \ldots$ (1)
Similarly,
Let us compute, $\left|1_{2} l_{3}+m_{2} \mathrm{~m}_{3}+\mathrm{n}_{2} \mathrm{n}_{3}\right|$

$$
\left|1_{2} 1_{3}+\mathrm{m}_{2} \mathrm{~m}_{3}+\mathrm{n}_{2} \mathrm{n}_{3}\right|=\left|\left(\frac{4}{13} \times \frac{3}{13}\right)+\left(\frac{12}{13} \times \frac{-4}{13}\right)+\left(\frac{3}{13} \times \frac{12}{13}\right)\right|=\frac{12}{13}+\left(\frac{-48}{13}\right)+\frac{36}{13}
$$

$=\frac{(-48)+48}{13}=0$
So, $\mathrm{L}_{2} \perp \mathrm{~L}_{3}$
Similarly,
Let us compute, $\left|1_{3} 1_{1}+m_{3} m_{1}+n_{3} n_{1}\right|$

$$
\begin{align*}
& \left|1_{3} 1_{1}+\mathrm{m}_{3} \mathrm{~m}_{1}+\mathrm{n}_{3} \mathrm{n}_{1}\right|=\left|\left(\frac{3}{13} \times \frac{12}{13}\right)+\left(\frac{-4}{13} \times \frac{-3}{13}\right)+\left(\frac{12}{13} \times \frac{-4}{13}\right)\right|=\frac{36}{13}+\frac{12}{13}+\left(\frac{-48}{13}\right) \\
& =\frac{48+(-48)}{13}=0 \tag{3}
\end{align*}
$$

So, $\mathrm{L}_{1} \perp \mathrm{~L}_{3}$
\therefore By (1), (2) and (3), the lines are perpendicular.
$\mathrm{L}_{1}, \mathrm{~L}_{2}$ and L_{3} are mutually perpendicular.
2. Show that the line through the points $(1,-1,2),(3,4,-2)$ is perpendicular to the line through the points $(0,3$, $2)$ and ($3,5,6$).

Solution:

Given:
The points $(1,-1,2),(3,4,-2)$ and $(0,3,2),(3,5,6)$.
Let us consider AB be the line joining the points, $(1,-1,2)$ and $(3,4,-2)$, and CD be the line through the points $(0,3,2)$ and ($3,5,6$).

Now,
The direction ratios, a_{1}, b_{1}, c_{1} of $A B$ are
$(3-1),(4-(-1)),(-2-2)=2,5,-4$.
Similarly,
The direction ratios, $\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}$ of CD are
$(3-0),(5-3),(6-2)=3,2,4$.
Then, $A B$ and $C D$ will be perpendicular to each other, if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=2(3)+5(2)+4(-4)$
$=6+10-16$
$=0$
$\therefore \mathrm{AB}$ and CD are perpendicular to each other.
3. Show that the line through the points $(4,7,8),(2,3,4)$ is parallel to the line through the points $(-1,-2,1),(1,2$, 5).

Solution:
Given:
The points $(4,7,8),(2,3,4)$ and $(-1,-2,1),(1,2,5)$.
Let us consider AB to be the line joining the points, $(4,7,8),(2,3,4)$ and CD to be the line through the points $(-1,-2$, 1), (1, 2, 5).

Now,
The direction ratios, a_{1}, b_{1}, c_{1} of $A B$ are
$(2-4),(3-7),(4-8)=-2,-4,-4$.
The direction ratios, $\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}$ of CD are
$(1-(-1)),(2-(-2)),(5-1)=2,4,4$.
Then, AB will be parallel to CD, if
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
So, $a_{1} / a_{2}=-2 / 2=-1$
$b_{1} / b_{2}=-4 / 4=-1$
$c_{1} / c_{2}=-4 / 4=-1$
\therefore We can say that,
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$-1=-1=-1$
Hence, AB is parallel to CD where the line through the points $(4,7,8),(2,3,4)$ is parallel to the line through the points $(-1,-2,1),(1,2,5)$
4. Find the equation of the line which passes through the point $(1,2,3)$ and is parallel to the vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$.

Solution:

Given:

Line passes through the point $(1,2,3)$ and is parallel to the vector.
We know that
Vector equation of a line that passes through a given point whose position
vector is \vec{a} and parallel to a given vector \vec{b} is

$$
\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}} .
$$

So, here the position vector of the point $(1,2,3)$ is given by
$\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$ and the parallel vector is $3 \hat{i}+2 \hat{j}-2 \hat{k}$
\therefore The vector equation of the required line is:

$$
\overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}+\lambda(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})
$$

Where λ is constant.
5. Find the equation of the line in vector and in Cartesian form that passes through the point with position vector $2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+4 \hat{\mathrm{k}}_{\text {and }} \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}$. is in the direction

Solution:

It is given that

Vector equation of a line that passes through a given point whose position vector is \vec{a} and parallel to a given vector \vec{b} is $\vec{r}=\vec{a}+\lambda \vec{b}$
Here let, $\vec{a}=2 \hat{i}-\hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-\hat{k}$
So, the vector equation of the required line is:

$$
\overrightarrow{\mathrm{r}}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+4 \hat{\mathrm{k}}+\lambda(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})
$$

Now the Cartesian equation of a line through a point ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$) and having direction cosines $\mathrm{l}, \mathrm{m}, \mathrm{n}$ is given by

$$
\frac{\mathrm{x}-\mathrm{x}_{1}}{1}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~m}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{n}}
$$

We know that if the direction ratios of the line are a, b, c, then

$$
1=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, m=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, n=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

The Cartesian equation of a line through a point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and having direction ratios $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
$$

Here, $\mathrm{x}_{1}=2, \mathrm{y}_{1}=-1, \mathrm{z}_{1}=4$ and $\mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=-1$
\therefore The Cartesian equation of the required line is:

$$
\frac{x-2}{1}=\frac{y-(-1)}{2}=\frac{z-4}{-1} \Rightarrow \frac{x-2}{1}=\frac{y+1}{2}=\frac{z-4}{-1}
$$

6. Find the Cartesian equation of the line which passes through the point $(-2,4,-5)$ and parallel to the line given by

$$
\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6} .
$$

Solution:
Given:
The points $(-2,4,-5)$

We know that the Cartesian equation of a line through a point $\left(x_{1}, y_{1}, z_{1}\right)$ and having direction ratios a, b, c is
$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
Here, the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ is $(-2,4,-5)$ and the direction ratio is given by:
$\mathrm{a}=3, \mathrm{~b}=5, \mathrm{c}=6$
\therefore The Cartesian equation of the required line is:

$$
\frac{x-(-2)}{3}=\frac{y-4}{5}=\frac{z-(-5)}{6} \Rightarrow \frac{x+2}{3}=\frac{y-4}{5}=\frac{z+5}{6}
$$

7. The Cartesian equation of a line is

$$
\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2} . \text { Write its vector form. }
$$

Solution:

Given:

The Cartesian equation is

$$
\begin{equation*}
\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2} \tag{1}
\end{equation*}
$$

We know that
The Cartesian equation of a line passing through a point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and having direction cosines $\mathrm{l}, \mathrm{m}, \mathrm{n}$ is
$\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}$

So when comparing this standard form with the given equation, we get
$\mathrm{x}_{1}=5, \mathrm{y}_{1}=-4, \mathrm{z}_{1}=6$ and
$\mathrm{l}=3, \mathrm{~m}=7, \mathrm{n}=2$

The point through which the line passes has the position vector $\overrightarrow{\mathrm{a}}=5 \mathrm{i}-4 \mathrm{j}+6 \mathrm{k}$ and
The vector parallel to the line is given by $\vec{b}=3 \hat{i}+7 \hat{j}+2 \hat{k}$
Since, vector equation of a line that passes through a given point whose position vector is \vec{a} and parallel to a given vector \vec{b} is $\vec{r}=\vec{a}+\lambda \vec{b}$
\therefore The required line in vector form is given as:

$$
\overrightarrow{\mathrm{r}}=(5 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})+\lambda(3 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})
$$

8. Find the vector and the Cartesian equations of the lines that passes through the origin and ($\mathbf{5},-2,3$).

Solution:
Given:
The origin $(0,0,0)$ and the point $(5,-2,3)$
We know that
The vector equation of as line which passes through two points whose position vectors are \vec{a} and \vec{b} is $\vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a})$

Here, the position vectors of the two points $(0,0,0)$ and $(5,-2,3)$
are $\vec{a}=0 \hat{i}+0 \hat{j}+0 \hat{k}$ and $\vec{b}=5 \hat{i}-2 \hat{j}+3 \hat{k}$, respectively.
\therefore The vector equation of the required line is given as:
$\overrightarrow{\mathrm{r}}=0 \hat{\mathrm{i}}+0 \hat{\mathrm{j}}+0 \hat{\mathrm{k}}+\lambda[(5 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})-(0 \hat{\mathrm{i}}+0 \hat{\mathrm{j}}+0 \hat{\mathrm{k}})]$
$\overrightarrow{\mathrm{r}}=\lambda(5 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$
Now, by using the formula,
Cartesian equation of a line that passes through two points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\left(\mathrm{x}_{2}\right.$, $\mathrm{y}_{2}, \mathrm{z}_{2}$) is given as
$\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$

So, the Cartesian equation of the line that passes through the origin $(0,0,0)$ and $(5,-2,3)$ is

$$
\frac{x-0}{5-0}=\frac{y-0}{-2-0}=\frac{z-0}{3-0} \Rightarrow \frac{x}{5}=\frac{y}{-2}=\frac{z}{3}
$$

\therefore The vector equation is

$$
\overrightarrow{\mathrm{r}}=\lambda(5 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})
$$

The Cartesian equation is

$$
\frac{x}{5}=\frac{y}{-2}=\frac{z}{3}
$$

9. Find the vector and the Cartesian equations of the line that passes through the points (3, $-\mathbf{2},-\mathbf{5}),(3,-2,6)$.

Solution:

Given:

The points $(3,-2,-5)$ and $(3,-2,6)$
Firstly let us calculate the vector form:
The vector equation of as line which passes through two points whose position vectors are \vec{a} and \vec{b} is $\vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a})$

Here, the position vectors of the two points $(3,-2,-5)$ and $(3,-2,6)$ are $\vec{a}=3 \hat{i}-2 \hat{j}-5 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+6 \hat{k}$ respectively.
\therefore The vector equation of the required line is:

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}}=3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}+\lambda[(3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})-(3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}})] \\
& \overrightarrow{\mathrm{r}}=3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}+\lambda(3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}-3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}) \\
& \overrightarrow{\mathrm{r}}=3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}+\lambda(11 \hat{\mathrm{k}})
\end{aligned}
$$

Now,
By using the formula,
Cartesian equation of a line that passes through two points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\left(\mathrm{x}_{2}\right.$, $\mathrm{y}_{2}, \mathrm{z}_{2}$) is
$\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
So, the Cartesian equation of the line that passes through the origin $(3,-2,-5)$ and $(3,-2,6)$ is

$$
\begin{aligned}
& \frac{x-3}{3-3}=\frac{y-(-2)}{(-2)-(-2)}=\frac{z-(-5)}{6-(-5)} \\
& \frac{x-3}{0}=\frac{y+2}{0}=\frac{z+5}{11}
\end{aligned}
$$

\therefore The vector equation is

$$
\overrightarrow{\mathrm{r}}=3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}+\lambda(11 \hat{\mathrm{k}})
$$

The Cartesian equation is
$\frac{x-3}{0}=\frac{y+2}{0}=\frac{z+5}{11}$
10. Find the angle between the following pairs of lines:
(i) $\vec{r}=2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k})$ and
$\overrightarrow{\mathrm{r}}=7 \hat{\mathrm{i}}-6 \hat{\mathrm{k}}+\mu(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$
(ii) $\overrightarrow{\mathrm{r}}=3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}})$ and
$\overrightarrow{\mathrm{r}}=2 \hat{\mathrm{i}}-\overrightarrow{\mathrm{j}}-56 \hat{\mathrm{k}}+\mu(3 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})$
Solution:

Let us consider θ be the angle between the given lines.
If θ is the acute angle between $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$ then
$\cos \theta=\left|\frac{\overrightarrow{b_{1}} \overrightarrow{b_{2}}}{\left|\overrightarrow{b_{1}}\right|\left|\overrightarrow{b_{2}}\right|}\right|$

$$
\begin{align*}
& \text { (i) } \overrightarrow{\mathrm{r}}=2 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+\hat{\mathrm{k}}+\lambda(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}) \text { and } \tag{1}\\
& \overrightarrow{\mathrm{r}}=7 \hat{\mathrm{i}}-6 \hat{\mathrm{k}}+\mu(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})
\end{align*}
$$

Here $\overrightarrow{\mathrm{b}_{1}}=3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}_{2}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
So, from equation (1), we have
$\cos \theta=\left|\frac{(3 \hat{i}+2 \hat{j}+6 \hat{k}) \cdot(\hat{i}+2 \hat{j}+2 \hat{k})}{|3 \hat{i}+2 \hat{j}+6 \hat{k}| \cdot|\hat{i}+2 \hat{j}+2 \hat{k}|}\right|$

We know that,

$$
|a \hat{i}+b \hat{j}+c \hat{k}|=\sqrt{a^{2}+b^{2}+c^{2}}
$$

So,

$$
|3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}|=\sqrt{3^{2}+2^{2}+6^{2}}=\sqrt{9+4+36}=\sqrt{49}=7
$$

And
$|\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}|=\sqrt{1^{2}+2^{2}+2^{2}}=\sqrt{1+4+4}=\sqrt{9}=3$
Now, we know that

$$
\left(a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}\right) \cdot\left(a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{k}\right)=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}
$$

So,

$$
(3 \hat{i}+2 \hat{j}+6 \hat{k}) \cdot(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})=3 \times 1+2 \times 2+6 \times 2=3+4+12=19
$$

By (2), we have

$$
\begin{aligned}
& \cos \theta=\frac{19}{7 \times 3}=\frac{19}{21} \\
& \theta=\cos ^{-1}\left(\frac{19}{21}\right)
\end{aligned}
$$

So,

$$
(3 \hat{i}+2 \hat{j}+6 \hat{k}) \cdot(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})=3 \times 1+2 \times 2+6 \times 2=3+4+12=19
$$

By (2), we have

$$
\begin{aligned}
& \cos \theta=\frac{19}{7 \times 3}=\frac{19}{21} \\
& \theta=\cos ^{-1}\left(\frac{19}{21}\right)
\end{aligned}
$$

(ii) $\vec{r}=3 \hat{i}+\hat{j}-2 \hat{k}+\lambda(\hat{i}-\hat{j}-2 \hat{k})$ and
$\overrightarrow{\mathrm{r}}=2 \hat{\mathrm{i}}-\overrightarrow{\mathrm{j}}-56 \hat{\mathrm{k}}+\mu(3 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})$
Here, $\overrightarrow{\mathrm{b}_{1}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}_{2}}=3 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$
So, from (1), we have
$\cos \theta=\left|\frac{(\hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}}) \cdot(3 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})}{|\hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}}||3 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}|}\right|$
We know that,

$$
\begin{equation*}
|a \hat{i}+b \hat{j}+c \hat{k}|=\sqrt{a^{2}+b^{2}+c^{2}} \tag{3}
\end{equation*}
$$

So,
$|\hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}}|=\sqrt{1^{2}+(-1)^{2}+2^{2}}=\sqrt{1+1+4}=\sqrt{6}=\sqrt{3} \times \sqrt{2}$
And

$$
|3 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}|=\sqrt{3^{2}+(-5)^{2}+(-4)^{2}}=\sqrt{9+25+16}=\sqrt{50}=5 \sqrt{2}
$$

Now, we know that

$$
\begin{aligned}
& \left(a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}\right) \cdot\left(a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{k}\right)=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2} \\
& \therefore(\hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}}) \cdot(3 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})=1 \times 3+(-1) \times(-5)+(-2) \times(-4)=3+5+8=16
\end{aligned}
$$

By (3), we have

$$
\begin{aligned}
& \cos \theta=\frac{16}{\sqrt{3} \times \sqrt{2} \times 5 \sqrt{2}}=\frac{16}{5 \times 2 \sqrt{3}}=\frac{8}{5 \sqrt{3}} \\
& \theta=\cos ^{-1}\left(\frac{8}{5 \sqrt{3}}\right) \\
& \theta=\cos ^{-1}\left(\frac{8}{5 \sqrt{3}}\right)
\end{aligned}
$$

11. Find the angle between the following pair of lines:
(i) $\frac{x-2}{2}=\frac{y-1}{5}-\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{y-4}{8}-\frac{z-5}{4}$
(ii) $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and $\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$

Solution:
We know that
If

$$
\frac{x-x_{1}}{l_{1}}=\frac{y-y_{1}}{m_{1}}=\frac{z-z_{1}}{n_{1}} \text { and } \frac{x-x_{2}}{l_{2}}=\frac{y-y_{2}}{m_{2}}=\frac{z-z_{2}}{n_{2}} \text { are the equations of }
$$

two lines, then the acute angle between the two lines is given by
$\cos \theta=\left|\mathrm{l}_{1} \mathrm{l}_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right|$
(i) $\frac{x-2}{2}=\frac{y-1}{5}-\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{y-4}{8}-\frac{z-5}{4}$

Here, $a_{1}=2, b_{1}=5, c_{1}=-3$ and

$$
\mathrm{a}_{2}=-1, \mathrm{~b}_{2}=8, \mathrm{c}_{2}=4
$$

Now,

$$
\begin{equation*}
1=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, m=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, \mathrm{n}=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}} \tag{2}
\end{equation*}
$$

Here, we know that

$$
\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}=\sqrt{2^{2}+5^{2}+(-3)^{2}}=\sqrt{4+25+9}=\sqrt{38}
$$

And

$$
\sqrt{\mathrm{a}_{2}^{2}+\mathrm{b}_{2}^{2}+\mathrm{c}_{2}^{2}}=\sqrt{(-1)^{2}+8^{2}+4^{2}}=\sqrt{1+64+16}=\sqrt{81}=9
$$

So, from equation (2), we have

$$
\begin{aligned}
l_{1}=\frac{a_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}=\frac{2}{\sqrt{38}}, \mathrm{~m}_{1}=\frac{b_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}=\frac{5}{\sqrt{38}}, \mathrm{n}_{1} & =\frac{c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}} \\
& =\frac{-3}{\sqrt{38}}
\end{aligned}
$$

And

$$
l_{2}=\frac{a_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}=\frac{-1}{9}, m_{2}=\frac{b_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}=\frac{8}{9}, n_{2}=\frac{c_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}=\frac{4}{9}
$$

\therefore From equation (1), we have

$$
\begin{aligned}
\cos \theta & =\left|\left(\frac{2}{\sqrt{38}}\right) \times\left(\frac{-1}{9}\right)+\left(\frac{5}{\sqrt{38}}\right) \times\left(\frac{8}{9}\right)+\left(\frac{-3}{\sqrt{38}}\right) \times\left(\frac{4}{9}\right)\right| \\
& =\left|\frac{-2+40-12}{9 \sqrt{38}}\right|=\left|\frac{40-12}{9 \sqrt{38}}\right|=\frac{26}{9 \sqrt{38}} \\
\theta & =\cos ^{-1}\left(\frac{26}{9 \sqrt{38}}\right)
\end{aligned}
$$

(ii) $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and $\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$

Here, $a_{1}=2, b_{1}=2, c_{1}=1$ and
$\mathrm{a}_{2}=4, \mathrm{~b}_{2}=1, \mathrm{c}_{2}=8$
Here, we know that
$\sqrt{\mathrm{a}_{1}^{2}+\mathrm{b}_{1}^{2}+\mathrm{c}_{1}^{2}}=\sqrt{2^{2}+2^{2}+1^{2}}=\sqrt{4+4+1}=\sqrt{9}=3$
And
$\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}=\sqrt{4^{2}+1^{2}+8^{2}}=\sqrt{16+1+64}=\sqrt{81}=9$
So, from equation (2), we have

$$
\mathrm{l}_{1}=\frac{\mathrm{a}_{1}}{\sqrt{\mathrm{a}_{1}^{2}+\mathrm{b}_{1}^{2}+\mathrm{c}_{1}^{2}}}=\frac{2}{3}, \mathrm{~m}_{1}=\frac{\mathrm{b}_{1}}{\sqrt{\mathrm{a}_{1}^{2}+\mathrm{b}_{1}^{2}+\mathrm{c}_{1}^{2}}}=\frac{2}{3}, \mathrm{n}_{1}=\frac{\mathrm{c}_{1}}{\sqrt{\mathrm{a}_{1}^{2}+\mathrm{b}_{1}^{2}+\mathrm{c}_{1}^{2}}}=\frac{1}{3}
$$

And

$$
l_{2}=\frac{\mathrm{a}_{2}}{\sqrt{\mathrm{a}_{2}^{2}+\mathrm{b}_{2}^{2}+\mathrm{c}_{2}^{2}}}=\frac{4}{9}, \mathrm{~m}_{2}=\frac{\mathrm{b}_{2}}{\sqrt{\mathrm{a}_{2}^{2}+\mathrm{b}_{2}^{2}+\mathrm{c}_{2}^{2}}}=\frac{1}{9}, \mathrm{n}_{2}=\frac{\mathrm{c}_{2}}{\sqrt{\mathrm{a}_{2}^{2}+\mathrm{b}_{2}^{2}+\mathrm{c}_{2}^{2}}}=\frac{8}{9}
$$

\therefore From equation (1), we have

$$
\begin{aligned}
& \cos \theta=\left|\left(\frac{2}{3} \times \frac{4}{9}\right)+\left(\frac{2}{3} \times \frac{1}{9}\right)+\left(\frac{1}{3} \times \frac{8}{9}\right)\right|=\left|\frac{8+2+8}{27}\right|=\frac{18}{27}=\frac{2}{3} \\
& \theta=\cos ^{-1}\left(\frac{2}{3}\right)
\end{aligned}
$$

\therefore From equation (1), we have

$$
\begin{aligned}
& \cos \theta=\left|\left(\frac{2}{3} \times \frac{4}{9}\right)+\left(\frac{2}{3} \times \frac{1}{9}\right)+\left(\frac{1}{3} \times \frac{8}{9}\right)\right|=\left|\frac{8+2+8}{27}\right|=\frac{18}{27}=\frac{2}{3} \\
& \theta=\cos ^{-1}\left(\frac{2}{3}\right)
\end{aligned}
$$

12. Find the values of p so that the lines

$$
\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2} \text { and } \frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5} \text { are at right angles. }
$$

Solution:

The standard form of a pair of Cartesian lines is:

$$
\begin{equation*}
\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}} \text { and } \frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}} \tag{1}
\end{equation*}
$$

So the given equations can be written according to the standard form, i.e.

$$
\begin{align*}
& \frac{-(x-1)}{3}=\frac{7(y-2)}{2 p}=\frac{z-3}{2} \quad \frac{-7(x-1)}{3 p}=\frac{y-5}{1}=\frac{-(z-6)}{5} \\
& \frac{x-1}{-3}=\frac{y-2}{2 p / 7}=\frac{z-3}{2} \quad \frac{x-1}{-3 p / 7}=\frac{y-5}{1}=\frac{z-6}{-5} \tag{2}
\end{align*}
$$

Now, comparing equation (1) and (2), we get

$$
a_{1}=-3, b_{1}=\frac{2 p}{7}, c_{1}=2 \text { and } a_{2}=\frac{-3 p}{7}, b_{2}=1, c_{2}=-5
$$

So, the direction ratios of the lines are
$-3,2 \mathrm{p} / 7,2$ and $-3 \mathrm{p} / 7,1,-5$
Now, as both the lines are at right angles,
So, $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$(-3)(-3 \mathrm{p} / 7)+(2 \mathrm{p} / 7)(1)+2(-5)=0$
$9 \mathrm{p} / 7+2 \mathrm{p} / 7-10=0$
$(9 p+2 p) / 7=10$
$11 \mathrm{p} / 7=10$
$11 p=70$
$p=70 / 11$
\therefore The value of p is $70 / 11$
13. Show that the lines

$$
\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1} \text { and } \frac{x}{1}=\frac{y}{2}=\frac{z}{3} \text { are perpendicular to each other. }
$$

Solution:

The equations of the given lines are
$\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$
Two lines with direction ratios is given as
$\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=0$
So the direction ratios of the given lines are 7, $-5,1$ and $1,2,3$
i.e., $a_{1}=7, b_{1}=-5, c_{1}=1$ and
$\mathrm{a}_{2}=1, \mathrm{~b}_{2}=2, \mathrm{c}_{2}=3$

Now, considering
$\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=7 \times 1+(-5) \times 2+1 \times 3$
$=7-10+3$
$=-3+3$
$=0$
\therefore The two lines are perpendicular to each other.
14. Find the shortest distance between the lines
$\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$ and
$\overrightarrow{\mathrm{r}}=2 \hat{i}-\hat{\mathrm{j}}-\hat{\mathrm{k}}+\mu(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}})$
Solution:

We know that the shortest distance between two
lines $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{1}}+\lambda \overrightarrow{\mathrm{b}_{1}}$ and $\overrightarrow{\mathrm{r}}=\overline{\mathrm{a}_{2}}+\mu \overrightarrow{\mathrm{b}_{2}}$ is given as:
$\mathrm{d}=\left|\frac{\left(\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right) \cdot\left(\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}\right)}{\left|\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right|}\right|$
Here by comparing the equations we get,

$$
\begin{aligned}
& \overrightarrow{a_{1}}=\hat{\hat{i}}+2 \hat{j}+\hat{k}, \overline{b_{1}}=\hat{i}-\hat{j}+\hat{k} \text { and } \\
& \overline{a_{2}}=2 \hat{i}-\hat{j}-\hat{k}, \overline{b_{2}}=2 \hat{i}+\hat{j}+2 \hat{k}
\end{aligned}
$$

Now,

$$
\begin{align*}
& \left(x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k}\right)-\left(x_{2} \hat{i}+y_{2} \hat{j}+z_{2} \hat{k}\right)=\left(x_{1}-x_{2}\right) \hat{i}+\left(y_{1}-y_{2}\right) \hat{j}+\left(z_{1}-z_{2}\right) \hat{k} \\
& \overrightarrow{a_{2}}-\overrightarrow{a_{1}}=(2 \hat{i}-\hat{j}-\hat{k})-(\hat{i}+2 \hat{j}+\hat{k})=\hat{i}-3 \hat{j}-2 \hat{k} \tag{2}
\end{align*}
$$

$$
\begin{align*}
& \left(x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k}\right)-\left(x_{2} \hat{\mathrm{i}}+y_{2} \hat{\mathrm{j}}+z_{2} \hat{\mathrm{k}}\right)=\left(x_{1}-x_{2}\right) \hat{\mathrm{i}}+\left(y_{1}-y_{2}\right) \hat{\mathrm{j}}+\left(z_{1}-z_{2}\right) \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}=(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})-(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})=\hat{\mathrm{i}}-3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}} \tag{2}
\end{align*}
$$

Now,

$$
\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}=(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}) \times(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}})
$$

$$
=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
1 & -1 & 1 \\
2 & 1 & 2
\end{array}\right|
$$

$$
=-3 \hat{\mathrm{i}}+3 \hat{\mathrm{k}}
$$

$$
\begin{equation*}
\Rightarrow \overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}=-3 \hat{\mathrm{i}}+3 \hat{\mathrm{k}} \tag{3}
\end{equation*}
$$

$\Rightarrow\left|\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right|=\sqrt{(-3)^{2}+3^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}$
Now,
$\left(a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}\right) \cdot\left(a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{k}\right)=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}$
$\left(\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right) \cdot\left(\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}\right)=(-3 \hat{\mathrm{i}}+3 \hat{\mathrm{k}}) \cdot(\hat{\mathrm{i}}-3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})=-3-6=-9$
Now, by substituting all the values in equation (1), we get The shortest distance between the two lines,

$$
\begin{aligned}
d & =\left|\frac{-9}{3 \sqrt{2}}\right| \\
& =\frac{9}{3 \sqrt{2}}[\text { From equation (4) and (5)] } \\
& =\frac{3}{\sqrt{2}}
\end{aligned}
$$

Let us rationalizing the fraction by multiplying the numerator and denominator by $\sqrt{ } 2$, we get

$$
\begin{aligned}
\mathrm{d} & =\frac{3}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{3 \sqrt{2}}{2}
\end{aligned}
$$

\therefore The shortest distance is $3 \sqrt{ } 2 / 2$
Let us rationalizing the fraction by multiplying the numerator and denominator by $\sqrt{ } 2$, we get

$$
\mathrm{d}=\frac{3}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{3 \sqrt{2}}{2}
$$

\therefore The shortest distance is $3 \sqrt{ } 2 / 2$
15. Find the shortest distance between the lines

$$
\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \text { and } \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}
$$

Solution:

We know that the shortest distance between two lines

$$
\begin{align*}
& \frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \text { and } \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1} \text { is given as: } \\
& d=\frac{\left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|}{\sqrt{\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}}} \tag{1}
\end{align*}
$$

The standard form of a pair of Cartesian lines is:

$$
\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}} \text { and } \frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}
$$

And the given equations are:

$$
\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \text { and } \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}
$$

Now let us compare the given equations with the standard form we get,
$\mathrm{x}_{1}=-1, \mathrm{y}_{1}=-1, \mathrm{z}_{1}=-1$;
$\mathrm{x}_{2}=3, \mathrm{y}_{2}=5, \mathrm{z}_{2}=7$
$a_{1}=7, b_{1}=-6, c_{1}=1$;
$\mathrm{a}_{2}=1, \mathrm{~b}_{2}=-2, \mathrm{c}_{2}=1$
Now, consider
$\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|=\left|\begin{array}{ccc}3-(-1) & 5-(-1) & 7-(-1) \\ 7 & -6 & 1 \\ 1 & -2 & 1\end{array}\right|=\left|\begin{array}{ccc}3+1 & 5+1 & 7+1 \\ 7 & -6 & 1 \\ 1 & -2 & 1\end{array}\right|$
$=\left|\begin{array}{ccc}4 & 6 & 8 \\ 7 & -6 & 1 \\ 1 & -2 & 1\end{array}\right|$
$=4(-6+2)-6(7-1)+8(-14+6)$
$=4(4)-6(6)+8(-8)$
$=-16-36-64$
$=-116$

Now we shall consider

$$
\begin{aligned}
& \sqrt{\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}} \\
& =\sqrt{((-6 \times 1)-(-2 \times 1))^{2}+((1 \times 1)-(1 \times 7))^{2}+((7 \times-2)-(1 \times-6))^{2}} \\
& =\sqrt{(-6+2)^{2}+(1-7)^{2}+(-14+6)^{2}}=\sqrt{(-4)^{2}+(-6)^{2}+(-8)^{2}} \\
& =\sqrt{16+36+64}=\sqrt{116}
\end{aligned}
$$

By substituting all the values in equation (1), we get
The shortest distance between the two lines,

$$
\mathrm{d}=\left|\frac{-116}{\sqrt{116}}\right|=\frac{116}{\sqrt{116}}=\sqrt{116}=2 \sqrt{29}
$$

\therefore The shortest distance is $2 \sqrt{ } 29$

16. Find the shortest distance between the lines whose vector equations are
$\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$ and
$\vec{r}=4 \hat{i}+5 \hat{j}-6 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+\hat{k})$

Solution:

We know that shortest distance between two lines $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{1}}+\lambda \overrightarrow{\mathrm{b}_{1}}$ and $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{2}}+\mu \overrightarrow{\mathrm{b}_{2}}$ is given as:
$\mathrm{d}=\left|\frac{\left(\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right) \cdot\left(\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}\right)}{\left|\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right|}\right|$

Here by comparing the equations we get,

$$
\begin{aligned}
& \overrightarrow{\mathrm{a}_{1}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{~b}_{1}}=\hat{\mathrm{i}}-3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}} \text { and } \\
& \overrightarrow{\mathrm{a}_{2}}=4 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}, \overrightarrow{\mathrm{~b}_{2}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}}
\end{aligned}
$$

Now let us subtract the above equations we get,

$$
\begin{align*}
& \left(x_{1} \hat{\mathrm{i}}+\mathrm{y}_{1} \hat{\mathrm{j}}+\mathrm{z}_{1} \hat{\mathrm{k}}\right)-\left(\mathrm{x}_{2} \hat{\mathrm{i}}+\mathrm{y}_{2} \hat{\mathrm{j}}+\mathrm{z}_{2} \hat{\mathrm{k}}\right)=\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right) \hat{\mathrm{i}}+\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right) \hat{\mathrm{j}}+\left(\mathrm{z}_{1}-z_{2}\right) \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}=(4 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})-(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})=3 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+3 \hat{\mathrm{k}} \tag{2}
\end{align*}
$$

And,

$$
\begin{aligned}
\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}} & =(\hat{\mathrm{i}}-3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}) \times(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}}) \\
& =\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
1 & -3 & 2 \\
2 & 3 & 1
\end{array}\right| \\
& =-9 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+9 \hat{\mathrm{k}}
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}=-9 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+9 \hat{\mathrm{k}} \tag{3}
\end{equation*}
$$

$\Rightarrow\left|\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right|=\sqrt{(-9)^{2}+3^{2}+9^{2}}=\sqrt{81+9+81}=\sqrt{171}=3 \sqrt{19}$
Now by multiplying equation (2) and (3) we get,

$$
\begin{align*}
& \left(a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}\right) \cdot\left(a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{k}\right)=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2} \\
& \left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)=(-9 \hat{i}+3 \hat{j}+9 \hat{k}) \cdot(3 \hat{i}+3 \hat{j}+3 \hat{k})=-27+9+27=9 \tag{5}
\end{align*}
$$

By substituting all the values in equation (1), we obtain The shortest distance between the two lines,

$$
\mathrm{d}=\left|\frac{9}{3 \sqrt{19}}\right|=\frac{9}{3 \sqrt{19}}=\frac{3}{\sqrt{19}}
$$

\therefore The shortest distance is $3 \sqrt{ } 19$

17. Find the shortest distance between the lines whose vector equations are
$\vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k}$ and
$\overrightarrow{\mathrm{r}}=(\mathrm{s}+1) \hat{\mathrm{i}}+(2 \mathrm{~s}-1) \hat{\mathrm{j}}-(2 \mathrm{~s}+1) \hat{\mathrm{k}}$
Solution:
Firstly let us consider the given equations

$$
\begin{aligned}
& \Rightarrow \overrightarrow{\mathrm{r}}=(1-\mathrm{t}) \hat{\mathrm{i}}+(\mathrm{t}-2) \hat{\mathrm{j}}+(3-2 \mathrm{t}) \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}-\mathrm{t} \hat{\mathrm{i}}+\hat{\mathrm{t}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}-2 \mathrm{t} \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}+\mathrm{t}(-\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}) \\
& \Rightarrow \overrightarrow{\mathrm{r}}=(\mathrm{s}+1) \hat{\mathrm{i}}+(2 \mathrm{~s}-1) \hat{\mathrm{j}}-(2 \mathrm{~s}+1) \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{r}}=\mathrm{s} \hat{\mathrm{i}}+\hat{\mathrm{i}}+2 \mathrm{sj}-\hat{\mathrm{j}}-2 \mathrm{~s} \hat{\mathrm{k}}-\hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}+\mathrm{s}(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})
\end{aligned}
$$

So now we need to find the shortest distance between
$\overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}+\mathrm{t}(-\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}+\mathrm{s}(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})$
We know that shortest distance between two lines
$\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{1}}+\lambda \overrightarrow{\mathrm{b}_{1}}$ and $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{2}}+\mu \overrightarrow{\mathrm{b}_{2}}$ is given as:
$d=\left|\frac{\left(\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right) \cdot\left(\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}\right)}{\left|\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right|}\right|$
Here by comparing the equations we get,
$\overrightarrow{a_{1}}=\hat{i}-2 \hat{j}+3 \hat{k}, \overrightarrow{b_{1}}=-\hat{i}+\hat{j}-2 \hat{k}$ and
$\overrightarrow{a_{2}}=\hat{i}-\hat{j}-\hat{k}, \overrightarrow{b_{2}}=\hat{i}+2 \hat{j}-2 \hat{k}$
Since,
$\left(x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k}\right)-\left(x_{2} \hat{i}+y_{2} \hat{j}+z_{2} \hat{k}\right)=\left(x_{1}-x_{2}\right) \hat{i}+\left(y_{1}-y_{2}\right) \hat{j}+\left(z_{1}-z_{2}\right) \hat{k}$
So,

$$
\begin{equation*}
\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}=(\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})-(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})=\hat{\mathrm{j}}-4 \hat{\mathrm{k}} \tag{2}
\end{equation*}
$$

And,

$$
\begin{align*}
\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}} & =(-\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}) \times(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}) \\
& =\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
-1 & 1 & -2 \\
1 & 2 & -2
\end{array}\right| \\
& =2 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}
\end{aligned} \begin{aligned}
\Rightarrow \overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}=2 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-3 \hat{\mathrm{k}} \ldots \ldots \ldots . .(3) \\
\Rightarrow\left|\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right|=\sqrt{2^{2}+(-4)^{2}+(-3)^{2}}=\sqrt{4+16+9}=\sqrt{29}
\end{align*}
$$

Now by multiplying equation (2) and (3) we get,

$$
\left(a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}\right) \cdot\left(a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{k}\right)=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}
$$

$$
\begin{equation*}
\left(\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right) \cdot\left(\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}\right)=(2 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}) \cdot(\hat{\mathrm{j}}-4 \hat{\mathrm{k}})=-4+12=8 \tag{5}
\end{equation*}
$$

By substituting all the values in equation (1), we obtain The shortest distance between the two lines,

$$
\mathrm{d}=\left|\frac{8}{\sqrt{29}}\right|=\frac{8}{\sqrt{29}}
$$

\therefore The shortest distance is $8 \sqrt{ } 29$

