EXERCISE 12.1

1. Maximise $Z=3 x+4 y$

Subject to the constraints: $x+y \leq 4, x \geq 0, y \geq 0$.

Solution:

The feasible region determined by the constraints, $x+y \leq 4, x \geq 0, y \geq 0$, is given below.

$\mathrm{O}(0,0), \mathrm{A}(4,0)$, and $\mathrm{B}(0,4)$ are the corner points of the feasible region. The values of Z at these points are given below.

Corner point	$\mathrm{Z}=3 \mathrm{x}+4 \mathrm{y}$	
$\mathrm{O}(0,0)$	0	
A $(4,0)$	12	
B $(0,4)$	16	Maximum

Hence, the maximum value of Z is 16 at the point $\mathrm{B}(0,4)$.
2. Minimise $Z=-3 x+4 y$
subject to $x+2 y \leq 8,3 x+2 y \leq 12, x \geq 0, y \geq 0$.

Solution:

The feasible region determined by the system of constraints, $x+2 y \leq 8,3 x+2 y \leq 12, x \geq 0, y \geq 0$ is given below.

$\mathrm{O}(0,0), \mathrm{A}(4,0), \mathrm{B}(2,3)$ and $\mathrm{C}(0,4)$ are the corner points of the feasible region.
The values of Z at these corner points are given below.

Corner point	$Z=-3 x+4 y$	
O $(0,0)$	0	
A $(4,0)$	-12	Minimum
B $(2,3)$	6	
C $(0,4)$	16	

Hence, the minimum value of Z is -12 at the point $(4,0)$.
3. Maximise $Z=5 x+3 y$
subject to $3 x+5 y \leq 15,5 x+2 y \leq 10, x \geq 0, y \geq 0$.

Solution:

The feasible region determined by the system of constraints, $3 x+5 y \leq 15,5 x+2 y \leq 10, x \geq 0$, and $y \geq 0$, is given below.

$\mathrm{O}(0,0), \mathrm{A}(2,0), \mathrm{B}(0,3)$ and $\mathrm{C}(20 / 19,45 / 19)$ are the corner points of the feasible region. The values of Z at these corner points are given below.

Corner point	$\mathrm{Z}=5 \mathrm{x}+3 \mathrm{y}$	
O $(0,0)$	0	
A $(2,0)$	10	
B $(0,3)$	9	Maximum
C $(20 / 19,45 / 19)$	$235 / 19$	

Hence, the maximum value of Z is $235 / 19$ at the point (20/19, $45 / 19$).
4. Minimise $\mathrm{Z}=3 x+5 y$
such that $x+3 y \geq 3, x+y \geq 2, x, y \geq 0$.

Solution:

The feasible region determined by the system of constraints, $x+3 y \geq 3, x+y \geq 2$, and $x, y \geq 0$, is given below.

It can be seen that the feasible region is unbounded.
The corner points of the feasible region are $\mathrm{A}(3,0), \mathrm{B}(3 / 2,1 / 2)$ and $\mathrm{C}(0,2)$.
The values of Z at these corner points are given below.

Corner point	$Z=3 x+5 y$	
A $(3,0)$	9	Smallest
B $(3 / 2,1 / 2)$	7	
C $(0,2)$	10	

7 may or may not be the minimum value of Z because the feasible region is unbounded.
For this purpose, we draw the graph of the inequality, $3 x+5 y<7$ and check whether the resulting half-plane has common points with the feasible region or not.

Hence, it can be seen that the feasible region has no common point with $3 \mathrm{x}+5 \mathrm{y}<7$.
Thus, the minimum value of Z is 7 at point $\mathrm{B}(3 / 2,1 / 2)$.
5. Maximise $Z=3 x+2 y$
subject to $x+2 y \leq 10,3 x+y \leq 15, x, y \geq 0$.

Solution:

The feasible region determined by the constraints, $x+2 y \leq 10,3 x+y \leq 15, x \geq 0$, and $y \geq 0$, is given below.

A $(5,0), \mathrm{B}(4,3), \mathrm{C}(0,5)$ and $\mathrm{D}(0,0)$ are the corner points of the feasible region.
The values of Z at these corner points are given below.

Corner point	$\mathrm{Z}=3 \mathrm{x}+2 \mathrm{y}$	
A $(5,0)$	15	
B $(4,3)$	18	Maximum
C $(0,5)$	10	

Hence, the maximum value of Z is 18 at points $(4,3)$.
6. Minimise $\mathrm{Z}=\boldsymbol{x}+2 \boldsymbol{y}$
subject to
$2 x+y \geq 3, x+2 y \geq 6, x, y \geq 0$

Solution:

The feasible region determined by the constraints, $2 x+y \geq 3, x+2 y \geq 6, x \geq 0$, and $y \geq 0$, is given below.

A $(6,0)$ and $B(0,3)$ are the corner points of the feasible region.
The values of Z at the corner points are given below.

Corner point	$\mathrm{Z}=\mathrm{x}+2 \mathrm{y}$
A $(6,0)$	6
B $(0,3)$	6

Here, the values of Z at points A and B are same. If we take any other point, such as $(2,2)$ on line $x+2 y=6$, then $Z=$ 6.

Hence, the minimum value of Z occurs for more than 2 points.
Therefore, the value of Z is minimum at every point on the line $x+2 y=6$.
7. Minimise and Maximise $Z=5 x+10 y$
subject to $x+2 y \leq 120, x+y \geq 60, x-2 y \geq 0, x, y \geq 0$.

Solution:

The feasible region determined by the constraints, $x+2 y \leq 120, x+y \geq 60, x-2 y \geq 0, x \geq 0$, and $y \geq 0$, is given below.

A $(60,0), B(120,0), C(60,30)$, and $D(40,20)$ are the corner points of the feasible region. The values of Z at these corner points are given below.

Corner point	$Z=5 x+10 y$	
A $(60,0)$	300	Minimum
B $(120,0)$	600	Maximum
C $(60,30)$	600	Maximum
D $(40,20)$	400	

The minimum value of Z is 300 at $(60,0)$ and the maximum value of Z is 600 at all the points on the line segment joining $(120,0)$ and $(60,30)$.
8. Minimise and Maximise $Z=x+2 y$
subject to $x+2 y \geq 100,2 x-y \leq 0,2 x+y \leq 200 ; x, y \geq 0$.

Solution:

The feasible region determined by the constraints, $x+2 y \geq 100,2 x-y \leq 0,2 x+y \leq 200, x \geq 0$, and $y \geq 0$, is given below.

$\mathrm{A}(0,50), \mathrm{B}(20,40), \mathrm{C}(50,100)$ and $\mathrm{D}(0,200)$ are the corner points of the feasible region. The values of Z at these corner points are given below.

Corner point	$\mathrm{Z}=\mathrm{x}+2 \mathrm{y}$	
A $(0,50)$	100	Minimum
B $(20,40)$	100	Minimum
C $(50,100)$	250	
D $(0,200)$	400	Maximum

The maximum value of Z is 400 at points $(0,200)$, and the minimum value of Z is 100 at all the points on the line segment joining the points $(0,50)$ and $(20,40)$.
9. Maximise $Z=-x+2 y$, subject to the constraints.
$x \geq 3, x+y \geq 5, x+2 y \geq 6, y \geq 0$.

Solution:

The feasible region determined by the constraints, $x \geq 3, x+y \geq 5, x+2 y \geq 6, y \geq 0$ is given below.

Here, it can be seen that the feasible region is unbounded.
The values of Z at corner points $\mathrm{A}(6,0), \mathrm{B}(4,1)$ and $\mathrm{C}(3,2)$ are given below.

Corner point	$Z=-x+2 y$
A $(6,0)$	$Z=-6$
B $(4,1)$	$Z=-2$
C $(3,2)$	$Z=1$

Since the feasible region is unbounded, $\mathrm{z}=1$ may or may not be the maximum value.

For this purpose, we graph the inequality, $-x+2 y>1$, and check whether the resulting half-plane has points in common with the feasible region or not.

Here, the resulting feasible region has points in common with the feasible region.
Hence, $\mathrm{z}=1$ is not the maximum value.
Z has no maximum value.
10. Maximise $\mathrm{Z}=x+y$, subject to $x-y \leq-1,-x+y \leq 0, x, y \geq 0$.

Solution:

The region determined by the constraints $x-y \leq-1,-x+y \leq 0, x, y \geq 0$ is given below.

There is no feasible region, and therefore, z has no maximum value.

