EXERCISE 9.1

Determine the order and degree (if defined) of differential equations given in Exercises 1 to 10.

1. $\frac{d^{4} y}{d x^{4}}+\sin \left(y^{\prime \prime \prime}\right)=0$

Solution:

The given differential equation is,

1. $\frac{d^{4} y}{d x^{4}}+\sin \left(y^{\prime \prime \prime}\right)=0$
$\Rightarrow y^{\prime \prime \prime \prime}+\sin \left(y^{\prime \prime \prime}\right)=0$
The highest order derivative present in the differential equation is y"", so its order is three. Hence, the given differential equation is not a polynomial equation in its derivatives, so its degree is not defined.
2. $y^{\prime}+5 y=0$

Solution:

The given differential equation is $y^{\prime}+5 y=0$
The highest order derivative present in the differential equation is y ', so its order is one.
Therefore, the given differential equation is a polynomial equation in its derivatives.
So, its degree is one.
3. $\left(\frac{d s}{d t}\right)^{4}+3 s \frac{d^{2} s}{d t^{2}}=0$

Solution:-

The given differential equation is,

$$
\left(\frac{d s}{d t}\right)^{4}+3 s \frac{d^{2} s}{d t^{2}}=0
$$

The highest order derivative present in the differential equation is $\frac{d^{2} s}{d t^{2}}$.
The order is two. Therefore, the given differential equation is a polynomial equation in $\frac{d^{2} s}{d t^{2}}$ and $\frac{d s}{d t}$.

So, its degree is one.
4. $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\cos \left(\frac{d y}{d x}\right)=0$

Solution:-

The given differential equation is,
$\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\cos \left(\frac{d y}{d x}\right)=0$
The highest order derivative present in the differential equation is $\frac{d^{2} y}{d x^{2}}$.
The order is two. Therefore, the given differential equation is not a polynomial.
So, its degree is not defined.
5. $\frac{d^{2} y}{d x^{2}}=\cos 3 x+\sin 3 x$

Solution:-

The given differential equation is, $\frac{d^{2} y}{d x^{2}}=\cos 3 x+\sin 3 x$
$\Rightarrow \frac{d^{2} y}{d x^{2}}-\cos 3 x-\sin 3 x=0$
The highest order derivative present in the differential equation is $\frac{d^{2} y}{d x^{2}}$. The order is two. Therefore, the given differential equation is a polynomial equation in $\frac{d^{2} y}{d x^{2}}$ and the power is 1 .

Therefore, its degree is one.
6. $\left(y^{\prime \prime \prime}\right)^{2}+\left(y^{\prime \prime}\right)^{3}+\left(y^{\prime}\right)^{4}+y^{5}=0$

Solution:

The given differential equation is, $\left(y^{\prime \prime \prime}\right)^{2}+\left(y^{\prime \prime}\right)^{3}+\left(y^{\prime}\right)^{4}+y^{5}=0$
The highest order derivative present in the differential equation is y '".
The order is three. Therefore, the given differential equation is a polynomial equation in $y^{\prime \prime}$, $y^{\prime \prime}$ and y^{\prime}.
Then, the power raised to $y^{\prime \prime}$ is 2 .
Therefore, its degree is two.
7. $y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0$

Solution:
The given differential equation is, $y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0$
The highest order derivative present in the differential equation is y"'.
The order is three. Therefore, the given differential equation is a polynomial equation in y '"', y ' and y '.
Then, the power raised to $y^{\prime \prime}$ is 1 .

Therefore, its degree is one.
8. $y^{\prime}+y=e^{x}$

Solution:

The given differential equation is $y^{\prime}+y=e^{x}$
$=y^{\prime}+y-e^{x}=0$
The highest order derivative present in the differential equation is y^{\prime}.
The order is one. Therefore, the given differential equation is a polynomial equation in y^{\prime}.
Then, the power raised to y^{\prime} is 1 .
Therefore, its degree is one.
9. $y^{\prime \prime \prime}+\left(y^{\prime}\right)^{2}+2 y=0$

Solution:

The given differential equation is, $y^{\prime \prime \prime}+\left(y^{\prime}\right)^{2}+2 y=0$
The highest order derivative present in the differential equation is $y^{\prime \prime}$.
The order is two. Therefore, the given differential equation is a polynomial equation in $y^{\prime \prime}$ and y^{\prime}.
Then, the power raised to y " is 1 .
Therefore, its degree is one.
10. $y^{\prime \prime}{ }^{\prime}+2 y^{\prime}+\sin y=0$

Solution:-

The given differential equation is, $\mathrm{y}^{\prime \prime \prime}+2 \mathrm{y}^{\prime}+\sin \mathrm{y}=0$
The highest order derivative present in the differential equation is $y^{\prime \prime}$.
The order is two. Therefore, the given differential equation is a polynomial equation in $y^{\prime \prime}$ and y^{\prime}.
Then the power raised to $y^{\prime \prime}$ is 1 .
Therefore, its degree is one.
11. The degree of the differential equation.

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{2}+\sin \left(\frac{d y}{d x}\right)+1=0 \text { is }
$$

(A) 3 (B) 2 (C) 1 (D) not defined

Solution:-

(D) not defined

The given differential equation is,

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{2}+\sin \left(\frac{d y}{d x}\right)+1=0 \text { is }
$$

The highest order derivative present in the differential equation is

$$
\frac{d^{2} y}{d x^{2}}
$$

The order is three. Therefore, the given differential equation is not a polynomial.
Therefore, its degree is not defined.
12. The order of the differential equation
$2 x^{2} \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+y=0$ is
(A) 2 (B) 1 (C) 0 (D) not defined

Solution:-

(A) 2

The given differential equation is,

$$
2 x^{2} \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+y=0
$$

The highest order derivative present in the differential equation is

$$
\frac{d^{2} y}{d x^{2}}
$$

Therefore, its order is two.

