EXERCISE 9.2

In each of the Exercises 1 to 10, verify that the given functions (explicit or implicit) are a solution of the corresponding differential equation:

1. $y=e x+1: y^{\prime \prime}-y^{\prime}=0$

Solution:-

From the question, it is given that $\mathrm{y}=\mathrm{e}^{\mathrm{x}}+1$
Differentiating both sides with respect to x , we get

$$
\frac{d y}{d x}=\frac{d}{d x}\left(e^{x}\right)
$$

Now, differentiating equation (i) both sides with respect to x, we have,

$$
\frac{d}{d x}\left(y^{\prime}\right)=\frac{d}{d x}\left(e^{x}\right)
$$

$\Rightarrow y^{\prime \prime}=e^{x}$
Then,
Substituting the values of y ' and $y^{\prime \prime}$ in the given differential equations, we get,
$y^{\prime \prime}-y^{\prime}=e^{x}-e^{x}=$ RHS.
Therefore, the given function is a solution of the given differential equation.
2. $y=x^{2}+2 x+C: y^{\prime}-2 x-2=0$

Solution:-
From the question, it is given that $\mathrm{y}=\mathrm{x}^{2}+2 \mathrm{x}+\mathrm{C}$
Differentiating both sides with respect to x , we get
$y^{\prime}=\frac{d}{d x}\left(x^{2}+2 x+C\right)$
$y^{\prime}=2 x+2$
Then,
Substituting the values of y ' in the given differential equations, we get
$=y$ ' $-2 x-2$
$=2 \mathrm{x}+2-2 \mathrm{x}-2$
$=0$
$=$ RHS
Therefore, the given function is a solution of the given differential equation.
3. $y=\cos x+C: y^{\prime}+\sin x=0$

Solution:-
From the question, it is given that $\mathrm{y}=\cos \mathrm{x}+\mathrm{C}$
Differentiating both sides with respect to x , we get
$y^{\prime}=\frac{d}{d x}(\cos x+C)$
$y^{\prime}=-\sin x$
Then,
Substituting the values of y ' in the given differential equations, we get
$=y^{\prime}+\sin x$
$=-\sin \mathrm{x}+\sin \mathrm{x}$
$=0$
$=$ RHS
Therefore, the given function is a solution of the given differential equation.
4. $y=\sqrt{ }\left(1+x^{2}\right): y^{\prime}=\left((x y) /\left(1+x^{2}\right)\right)$

Solution:-

From the question it is given that $\mathrm{y}=\sqrt{1+\mathrm{x}^{2}}$
Differentiating both sides with respect to x , we get,
$\mathrm{y}^{\prime}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\sqrt{1+\mathrm{x}^{2}}\right)$
$\Rightarrow y^{\prime}=\frac{1}{2 \sqrt{1+x^{2}}} \cdot \frac{d}{d x}\left(1+x^{2}\right)$
By differentiating $\left(1+x^{2}\right)$ we get,
$\Rightarrow y^{\prime}=\frac{2 x}{2 \sqrt{1+x^{2}}}$
On simplifying we get,
$\Rightarrow y^{\prime}=\frac{x}{\sqrt{1+x^{2}}}$
By multiplying and dividing $V\left(1+x^{2}\right)$
$\Rightarrow \mathrm{y}^{\prime}=\frac{\mathrm{x}}{1+\mathrm{x}^{2}} \times \sqrt{1+\mathrm{x}^{2}}$
Substituting the value of $V\left(1+x^{2}\right)$
$\Rightarrow y^{\prime}=\frac{x}{1+x^{2}} . y$
Substituting the value of $v\left(1+x^{2}\right)$
$\Rightarrow y^{\prime}=\frac{x}{1+x^{2}} . y$
$\Rightarrow y^{\prime}=\frac{x y}{1+x^{2}}$
Therefore, LHS = RHS
Therefore, the given function is a solution of the given differential equation.
5. $\mathrm{y}=\mathrm{Ax}: \mathrm{xy}^{\prime}=\mathrm{y}(\mathrm{x} \neq 0)$

Solution:-
From the question, it is given that $\mathrm{y}=\mathrm{Ax}$

Differentiating both sides with respect to x , we get
$y^{\prime}=\frac{d}{d x}(A x)$
$y^{\prime}=A$
Then,
Substituting the values of y^{\prime} in the given differential equations, we get
$=x y^{\prime}$
$=\mathrm{x} \times \mathrm{A}$
$=\mathrm{Ax}$
$=\mathrm{Y} \ldots$ [from the question]
$=$ RHS
Therefore, the given function is a solution of the given differential equation.
6. $y=x \sin x: x y^{\prime}=y+x\left(\sqrt{ }\left(x^{2}-y^{2}\right)\right)(x \neq 0$ and $x>y$ or $x<-y)$

Solution:-
From the question it is given that $y=x \sin x$
Differentiating both sides with respect to x, we get,

$$
\begin{aligned}
& y^{\prime}=\frac{d}{d x}(x \sin x) \\
& \Rightarrow y^{\prime}=\sin x \frac{d}{d x}(x)+x \cdot \frac{d}{d x}(\sin x) \\
& \Rightarrow y^{\prime}=\sin x+x \cos x
\end{aligned}
$$

Then,
Substituting the values of y^{\prime} in the given differential equations, we get,

Then,
Substituting the values of y^{\prime} in the given differential equations, we get,
LHS $=x y^{\prime}=x(\sin x+x \cos x)$
$=x \sin x+x^{2} \cos x$
From the question substitute y instead of $x \sin x$, we get,

$$
\begin{aligned}
& =y+x^{2} \cdot \sqrt{1-\sin ^{2} x} \\
& =y+x^{2} \sqrt{1-\left(\frac{y}{x}\right)^{2}} \\
& =y+x \sqrt{(y)^{2}-(x)^{2}} \\
& =\text { RHS }
\end{aligned}
$$

Therefore, the given function is a solution of the given differential equation
7. $\mathrm{xy}=\log \mathrm{y}+\mathrm{C}: y^{\prime}=\frac{y^{2}}{1-x y}(x y \neq 1)$

Solution:-

From the question it is given that $x y=$ logy $+C$
Differentiating both sides with respect to x, we get,

$$
\begin{aligned}
& \frac{d}{d x}(x y)=\frac{d}{d x}(\log y) \\
& \Rightarrow y \cdot \frac{d}{d x}(x)+x \cdot \frac{d y}{d x}=\frac{1}{y} \frac{d y}{d x}
\end{aligned}
$$

On simplifying, we get.

$$
\Rightarrow y+x y^{\prime}=\frac{1}{y} \frac{d y}{d x}
$$

By cross multiplication,

$$
\begin{aligned}
& \Rightarrow y^{2}+x y y^{\prime}=y^{\prime} \\
& \Rightarrow(x y-1) y^{\prime}=-y^{2} \\
& \Rightarrow y^{\prime}=\frac{y^{2}}{1-x y} \\
& \Rightarrow y^{\prime}=\frac{y^{2}}{1-x y}
\end{aligned}
$$

By comparing LHS and RHS
LHS = RHS

Therefore, the given function is the solution of the corresponding differential equation.
8. $y-\cos y=x:(y \sin y+\cos y+x) y^{\prime}=y$

Solution:-

From the question it is given that $\mathrm{y}-\cos \mathrm{y}=\mathrm{x}$
Differentiating both sides with respect to x, we get,

$$
\begin{aligned}
& \frac{d y}{d x}-\frac{d}{d x} \cos y=\frac{d}{d x}(x) \\
& \Rightarrow y^{\prime}+\sin y \cdot y^{\prime}=1 \\
& \Rightarrow y^{\prime}(1+\sin y)=1 \\
& \Rightarrow y^{\prime}=\frac{1}{1+\sin y}
\end{aligned}
$$

Then,
Substituting the values of y^{\prime} in the given differential equations, we get, Consider LHS $=(y \sin y+\cos y+x) y^{\prime}$

$$
\begin{aligned}
& =(y \sin y+\cos y+y-\cos y) \times \frac{1}{1+\sin y} \\
& =y(1+\sin y) \times \frac{1}{1+\sin y}
\end{aligned}
$$

On simplifying we get,

$$
\begin{aligned}
& =y \\
& =\text { RHS }
\end{aligned}
$$

Therefore, the given function is the solution of the corresponding differential equation.
9. $x+y=\tan ^{-1} y: y^{2} y^{\prime}+y^{2}+1=0$

Solution:-

From the question it is given that $x+y=\tan ^{-1} y$
Differentiating both sides with respect to x , we get,

$$
\begin{aligned}
& \frac{d}{d x}(x+y)=\frac{d}{d x}\left(\tan ^{-1} y\right) \\
& \Rightarrow 1+y^{\prime}=\left[\frac{1}{1+y^{2}}\right] y^{\prime}
\end{aligned}
$$

By transposing y^{\prime} to RHS and it becomes $-y^{\prime}$ and take out y^{\prime} as common for both, we get,

$$
\Rightarrow y^{\prime}\left[\frac{1}{1+y^{2}}-1\right]=1
$$

On simplifying,

$$
\begin{aligned}
& \Rightarrow \mathrm{y}^{\prime}\left[\frac{1-\left(1+\mathrm{y}^{2}\right)}{1+\mathrm{y}^{2}}\right]=1 \\
& \Rightarrow \mathrm{y}^{\prime}\left[\frac{-\mathrm{y}^{2}}{1+\mathrm{y}^{2}}\right]=1 \\
& \Rightarrow \mathrm{y}^{\prime}=\frac{-\left(1+\mathrm{y}^{2}\right)}{\mathrm{y}^{2}}
\end{aligned}
$$

Then,
Substituting the values of y^{\prime} in the given differential equations, we get,
Consider, LHS $=y^{2} y^{\prime}+y^{2}+1$

$$
\begin{aligned}
& =y^{2}\left[\frac{-\left(1+y^{2}\right)}{y^{2}}\right]+y^{2}+1 \\
& =-1-y^{2}+y^{2}+1 \\
& =0 \\
& =\text { RHS }
\end{aligned}
$$

Therefore, the given function is the solution of the corresponding differential equation.
10. $y=\sqrt{a^{2}-x^{2}} x \in(-a, a): \quad x+y \frac{d y}{d x}=0(y \neq 0)$

Solution:-
From the question it is given that $y=\sqrt{a^{2}-x^{2}}$
Differentiating both sides with respect to x , we get,

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(\sqrt{a^{2}-x^{2}}\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{2 \sqrt{a^{2}-x^{2}}} \cdot \frac{d}{d x}\left(a^{2}-x^{2}\right) \\
& =\frac{1}{2 \sqrt{a^{2}-x^{2}}}(-2 x) \\
& =\frac{-x}{\sqrt{a^{2}-x^{2}}}
\end{aligned}
$$

Then,
Substituting the values of y^{\prime} in the given differential equations, we get,
Consider LHS $=x+y \frac{d y}{d x}$

$$
=x+\sqrt{a^{2}-x^{2}} \times \frac{-x}{\sqrt{a^{2}-x^{2}}}
$$

On simplifying, we get,

$$
\begin{aligned}
& =x-x \\
& =0
\end{aligned}
$$

By comparing LHS and RHS
LHS = RHS.

Therefore, the given function is the solution of the corresponding differential equation.
11. The number of arbitrary constants in the general solution of a differential equation of fourth order is:
(A) 0 (B) 2 (C) 3 (D) 4

Solution:-
(D) 4

The solution which contains arbitrary constants is called the general solution (primitive) of the differential equation.
12. The number of arbitrary constants in the particular solution of a differential equation of third order is:
(A) 3 (B) 2 (C) 1 (D) 0

Solution:-
(D) 0

The solution free from arbitrary constants, i.e., the solution obtained from the general solution by giving particular values to the arbitrary constants, is called a particular solution of the differential equation.

