EXERCISE 10.3

1. Find the area of the rectangles whose sides are:
(a) $\mathbf{3 \mathrm { cm }}$ and 4 cm
(b) $\mathbf{1 2} \mathbf{~ m}$ and 21 m
(c) $2 \mathbf{k m}$ and $\mathbf{3 k m}$
(d) 2 m and 70 cm

Solutions:
We know that
Area of rectangle $=$ Length \times Breadth
(a) $\mathrm{l}=3 \mathrm{~cm}$ and $\mathrm{b}=4 \mathrm{~cm}$

Area $=1 \times b=3 \times 4$
$=12 \mathrm{~cm}^{2}$
(b) $\mathrm{l}=12 \mathrm{~m}$ and $\mathrm{b}=21 \mathrm{~m}$

Area $=1 \times b=12 \times 21$
$=252 \mathrm{~m}^{2}$
(c) $\mathrm{l}=2 \mathrm{~km}$ and $\mathrm{b}=3 \mathrm{~km}$

Area $=1 \times b=2 \times 3$
$=6 \mathrm{~km}^{2}$
(d) $\mathrm{l}=2 \mathrm{~m}$ and $\mathrm{b}=70 \mathrm{~cm}=0.70 \mathrm{~m}$

Area $=1 \times b=2 \times 0.70$
$=1.40 \mathrm{~m}^{2}$
2. Find the areas of the squares whose sides are:
(a) 10 cm
(b) 14 cm
(c) 5 m

Solutions:
(a) Area of square $=$ side 2
$=10^{2}$
$=100 \mathrm{~cm}^{2}$
(b) Area of square $=$ side 2
$=14^{2}$
$=196 \mathrm{~cm}^{2}$
(c) Area of square $=\operatorname{side}^{2}$
$=5^{2}$
$=25 \mathrm{~cm}^{2}$
3. The length and breadth of the three rectangles are as given below:
(a) 9 m and 6 m
(b) $\mathbf{1 7} \mathbf{m}$ and $\mathbf{3} \mathbf{~ m}$
(c) 4 m and 14 m

Which one has the largest area, and which one has the smallest?

Solutions:

(a) Area of rectangle $=1 \times b$
$=9 \times 6$
$=54 \mathrm{~m}^{2}$
(b) Area of rectangle $=1 \times b$
$=17 \times 3$
$=51 \mathrm{~m}^{2}$
(c) Area of rectangle $=1 \times b$
$=4 \times 14$
$=56 \mathrm{~m}^{2}$

The area of rectangle $56 \mathrm{~m}^{2}$, i.e. (c), is the largest area and the area of rectangle $51 \mathrm{~m}^{2}$, i.e. (b), is the smallest area
4. The area of a rectangular garden 50 m long is 300 sq m . Find the width of the garden.

Solutions:

Area of rectangle $=$ length \times width
$300=50 \times$ width
width $=300 / 50$
width $=6 \mathrm{~m}$
\therefore The width of the garden is 6 m .
5. What is the cost of tiling a rectangular plot of land 500 m long and 200 m wide at the rate of ₹ 8 per hundred sq \mathbf{m} ?

Solutions:
Area of land $=$ length \times breadth
$=500 \times 200$
$=1,00,000 \mathrm{~m}^{2}$
\therefore Cost of tiling $1,00,000 \mathrm{sq} \mathrm{m}$ of land $=(8 \times 1,00,000) / 100$
$=₹ 8000$
\therefore The cost of tiling a rectangular plot of land is ₹ 8000 .
6. A tabletop measures 2 m by 1 m 50 cm . What is its area in square metres?

Solutions:

Given
$1=2 \mathrm{~m}$
$\mathrm{b}=1 \mathrm{~m} 50 \mathrm{~cm}=1.50 \mathrm{~m}$
Area $=1 \times b=2 \times 1.50$
$=3 \mathrm{~m}^{2}$
\therefore The area of the tabletop is $3 \mathrm{~m}^{2}$.
7. A room is 4 m long and 3 m 50 cm wide. How many square metres of carpet are needed to cover the floor of the room?

Solutions:

Given
$1=4 \mathrm{~m}$
$\mathrm{b}=3 \mathrm{~m} \mathrm{50} \mathrm{cm}=3.50 \mathrm{~m}$

Area $=1 \times b=4 \times 3.50$
$=14 \mathrm{~m}^{2}$
\therefore The carpet required to cover the floor is $14 \mathrm{~m}^{2}$.
8. A floor is 5 m long and 4 m wide. A square carpet of sides $\mathbf{3} \mathbf{~ m}$ is laid on the floor. Find the area of the floor that is not carpeted.

Solutions:

Area of floor $=1 \times b=5 \times 4$
$=20 \mathrm{~m}^{2}$
Area of square carpet $=3 \times 3$
$=9 \mathrm{~m}^{2}$

Area of floor that is not carpeted $=20-9$
$=11 \mathrm{~m}^{2}$
\therefore The area of the floor that is not carpeted is $11 \mathrm{~m}^{2}$.
9. Five square flower beds, each of sides 1 m , are dug on a piece of land 5 m long and 4 m wide. What is the area of the remaining part of the land?

Solutions:

Area of flower square bed $=1 \times 1$
$=1 \mathrm{~m}^{2}$
Area of 5 square bed $=1 \times 5$
$=5 \mathrm{~m}^{2}$

Area of land $=5 \times 4$
$=20 \mathrm{~m}^{2}$
Remaining part of the land $=$ Area of land - Area of 5 square bed
$=20-5$
$=15 \mathrm{~m}^{2}$
\therefore The remaining part of the land is $15 \mathrm{~m}^{2}$.
10. By splitting the following figures into rectangles, find their areas (The measures are given in centimetres).

Solutions:
(a)

Area of yellow region $=3 \times 3$
$=9 \mathrm{~cm}^{2}$

Area of orange region $=1 \times 2$
$=2 \mathrm{~cm}^{2}$
Area of grey region $=3 \times 3$
$=9 \mathrm{~cm}^{2}$

Area of brown region $=2 \times 4$
$=8 \mathrm{~cm}^{2}$
Total area $=9+2+9+8$
$=28 \mathrm{~cm}^{2}$
\therefore The total area is $28 \mathrm{~cm}^{2}$.
(b)

Area of brown region $=3 \times 1$
$=3 \mathrm{~cm}^{2}$

Area of orange region $=3 \times 1$
$=3 \mathrm{~cm}^{2}$
Area of grey region $=3 \times 1$
$=3 \mathrm{~cm}^{2}$
Total area $=3+3+3$
$=9 \mathrm{~cm}^{2}$
\therefore The total area is $9 \mathrm{~cm}^{2}$.
11. Split the following shapes into rectangles and find their areas. (The measures are given in centimetres)

(a)

(b)

(c)

Solutions:
(a)

Total area of the figure $=12 \times 2+8 \times 2$
$=40 \mathrm{~cm}^{2}$
(b)

There are 5 squares, and each side is 7 cm .
Area of 5 squares $=5 \times 7^{2}$
$=245 \mathrm{~cm}^{2}$
(c)

Area of grey rectangle $=2 \times 1$
$=2 \mathrm{~cm}^{2}$
Area of brown rectangle $=2 \times 1$
$=2 \mathrm{~cm}^{2}$
Area of orange rectangle $=5 \times 1$
$=5 \mathrm{~cm}^{2}$
Total area $=2+2+5$
$=9 \mathrm{~cm}^{2}$
12. How many tiles whose length and breadth are 12 cm and 5 cm , respectively, will be needed to fit in a rectangular region whose length and breadth are respectively:
(a) 100 cm and 144 cm ?
(b) 70 cm and 36 cm ?

Solutions:

(a) Area of rectangle $=100 \times 144$
$=14400 \mathrm{~cm}$

Area of one tile $=5 \times 12$
$=60 \mathrm{~cm}^{2}$
Number of tiles $=($ Area of rectangle $) /($ Area of one tile $)$
$=14400 / 60$
$=240$
Hence, 240 tiles are needed
(b) Area of rectangle $=70 \times 36$
$=2520 \mathrm{~cm}^{2}$
Area of one tile $=5 \times 12$
$=60 \mathrm{~cm}^{2}$
Number of tiles $=($ Area of rectangle $) /($ Area of one tile $)$
$=2520 / 60$
$=42$
Hence, 42 tiles are needed.

