EXERCISE 10.1

1. Find the perimeter of each of the following figures:

Solutions:
(a) Perimeter $=$ Sum of all the sides
$=1+2+4+5$
$=12 \mathrm{~cm}$
(b) Perimeter $=$ Sum of all the sides
$=23+35+35+40$
$=133 \mathrm{~cm}$
(c) Perimeter $=$ Sum of all the sides
$=15+15+15+15$
$=60 \mathrm{~cm}$
(d) Perimeter $=$ Sum of all the sides
$=4+4+4+4+4$
$=20 \mathrm{~cm}$
(e) Perimeter $=$ Sum of all the sides
$=1+4+0.5+2.5+2.5+0.5+4$
$=15 \mathrm{~cm}$
(f) Perimeter $=$ Sum of all the sides
$=4+1+3+2+3+4+1+3+2+3+4+1+3+2+3+4+1+3+2+3$
$=52 \mathrm{~cm}$
2. The lid of a rectangular box, with sides 40 cm by 10 cm , is sealed all around with tape. What is the length of the tape required?

Solutions:
Length of required tape $=$ Perimeter of rectangle
$=2($ Length + Breadth $)$
$=2(40+10)$
$=2(50)$
$=100 \mathrm{~cm}$
\therefore The required length of tape is 100 cm .
3. A table top measures 2 m 25 cm by 1 m 50 cm . What is the perimeter of the tabletop?

Solutions:

Length of tabletop $=2 \mathrm{~m} 25 \mathrm{~cm}=2.25 \mathrm{~m}$
Breadth of tabletop $=1 \mathrm{~m} 50 \mathrm{~cm}=1.50 \mathrm{~m}$
Perimeter of tabletop $=2($ Length + Breadth $)$
$=2(2.25+1.50)$
$=2(3.75)$
$=2 \times 3.75$
$=7.5 \mathrm{~m}$
\therefore The perimeter of the table top is 7.5 m .
4. What is the length of the wooden strip required to frame a photograph of length and breadth, 32 cm and 21 cm, respectively?

Solutions:
The required length of the wooden strip $=$ Perimeter of the photograph
$=2($ Length + Breadth $)$
$=2(32+21)$
$=2(53)$
$=2 \times 53$
$=106 \mathrm{~cm}$
\therefore The required length of the wooden strip is 106 cm .
5. A rectangular piece of land measures 0.7 km by 0.5 km . Each side is to be fenced with 4 rows of wires. What is the length of the wire needed?

Solutions:

Perimeter of the field $=2$ (Length + Breadth $)$
$=2(0.7+0.5)$
$=2(1.2)$
$=2 \times 1.2$
$=2.4 \mathrm{~km}$
Each side is to be fenced with 4 rows $=4 \times 2.4$
$=9.6 \mathrm{~km}$
\therefore The total length of the required wire is 9.6 km .
6. Find the perimeter of each of the following shapes:
(a) A triangle of sides $\mathbf{3 c m}, \mathbf{4} \mathbf{~ c m}$ and $\mathbf{5 c m}$
(b) An equilateral triangle of side $9 \mathbf{c m}$
(c) An isosceles triangle with equal sides of $\mathbf{8} \mathbf{~ c m}$ each and the third side of $\mathbf{6} \mathbf{c m}$.

Solutions:

(a) Perimeter of triangle $=3+4+5$
$=12 \mathrm{~cm}$
(b) Perimeter of an equilateral triangle $=3 \times$ side
$=3 \times 9$
$=27 \mathrm{~cm}$
(c) Perimeter of isosceles triangle $=8+8+6$
$=22 \mathrm{~cm}$
7. Find the perimeter of a triangle with sides measuring $10 \mathrm{~cm}, 14 \mathrm{~cm}$ and 15 cm .

Solutions:
Perimeter of triangle $=10+14+15$
$=39 \mathrm{~cm}$
\therefore The perimeter of the triangle is 39 cm .
8. Find the perimeter of a regular hexagon with each side measuring 8 m .

Solutions:
Perimeter of hexagon $=6 \times 8$
$=48 \mathrm{~m}$
\therefore The perimeter of the regular hexagon is 48 m .
9. Find the side of the square whose perimeter is 20 m .

Solutions:
Perimeter of square $=4 \times$ side
$20=4 \times$ side
Side $=20 / 4$
Side $=5 \mathrm{~m}$
\therefore The side of the square is 5 m .
10. The perimeter of a regular pentagon is 100 cm . How long is its each side?

Solutions:

The perimeter of the regular pentagon $=100 \mathrm{~cm}$
$5 \times$ side $=100 \mathrm{~cm}$

Side $=100 / 5$
Side $=20 \mathrm{~cm}$
\therefore The side of the pentagon is 20 cm .
11. A piece of string is 30 cm long. What will be the length of each side if the string is used to form:
(a) a square?
(b) an equilateral triangle?
(c) a regular hexagon?

Solutions:
(a) Perimeter of square $=30 \mathrm{~cm}$
$4 \times$ side $=30$

Side $=30 / 4$
Side $=7.5 \mathrm{~cm}$
(b) Perimeter of equilateral triangle $=30 \mathrm{~cm}$
$3 \times$ side $=30$
Side $=30 / 3$

Side $=10 \mathrm{~cm}$
(c) Perimeter of regular hexagon $=30 \mathrm{~cm}$
$6 \times$ side $=30$
Side $=30 / 6$
Side $=5 \mathrm{~cm}$
12. Two sides of a triangle are 12 cm and 14 cm . The perimeter of the triangle is 36 cm . What is its third side?

Solutions:

Let x cm be the third side
Perimeter of triangle $=36 \mathrm{~cm}$
$12+14+x=36$
$26+x=36$
$x=36-26$
$\mathrm{x}=10 \mathrm{~cm}$
\therefore The third side is 10 cm .
13. Find the cost of fencing a square park of side 250 m at the rate of $₹ 20$ per metre.

Solutions:
Side of square $=250 \mathrm{~m}$
Perimeter of square $=4 \times$ side
$=4 \times 250$
$=1000 \mathrm{~m}$
Cost of fencing = ₹ 20 per m
Cost of fencing for $1000 \mathrm{~m}=$ ₹ 20×1000
= ₹ 20,000
\therefore The cost of fencing the square park is ₹ 20,000 .
14. Find the cost of fencing a rectangular park of length 175 cm and breadth 125 m at the rate of $₹ \mathbf{1 2}$ per metre.

Solutions:
Length $=175 \mathrm{~cm}$
Breadth $=125 \mathrm{~m}$
Perimeter of rectangular park $=2$ (Length + Breadth $)$
$=2(175+125)$
$=2(300)$
$=2 \times 300$
$=600 \mathrm{~m}$
Cost of fencing $=12 \times 600$
$=7200$
\therefore The cost of fencing is ₹ 7,200 .
15. Sweety runs around a square park of side 75 m . Bulbul runs around a rectangular park with a length of 60 m and a breadth of $\mathbf{4 5} \mathrm{m}$. Who covers less distance?

Solutions:
Perimeter of square $=4 \times$ side
$=4 \times 75$
$=300 \mathrm{~m}$
\therefore The distance covered by Sweety is 300 m
Perimeter of the rectangular park $=2($ Length + Breadth $)$
$=2(60+45)$
$=2(105)$
$=2 \times 105$
$=210 \mathrm{~m}$
\therefore The distance covered by Bulbul is 210 m
Hence, Bulbul covers less distance than Sweety.
16. What is the perimeter of each of the following figures? What do you infer from the answers?

Solutions:
(a) Perimeter of square $=4 \times$ side
$=4 \times 25$
$=100 \mathrm{~cm}$
(b) Perimeter of rectangle $=2(40+10)$
$=2 \times 50$
$=100 \mathrm{~cm}$
(c) Perimeter of rectangle $=2$ (Length + Breadth $)$
$=2(30+20)$
$=2(50)$
$=2 \times 50$
$=100 \mathrm{~cm}$
(d) Perimeter of triangle $=30+30+40$
$=100 \mathrm{~cm}$
\therefore All the figures have the same perimeter.
17. Avneet buys 9 square paving slabs, each with a side of $1 / 2 \mathrm{~m}$. He lays them in the form of a square.
(a) What is the perimeter of his arrangement [fig 10.7(i)]?

(b) Shari does not like his arrangement. She gets him to lay them out like a cross. What is the perimeter of her arrangement [(Fig 10.7 (ii)]?
(c) Which has a greater perimeter?
(d) Avneet wonders if there is a way of getting an even greater perimeter. Can you find a way of doing this? (The paving slabs must meet along complete edges, i.e. they cannot be broken.)

Solutions:
(a) Side of square $=3 \times$ side
$=3 \times 1 / 2$
$=3 / 2 \mathrm{~m}$
Perimeter of Square $=4 \times 3 / 2$
$=2 \times 3$
$=6 \mathrm{~m}$
(b) Perimeter $=0.5+1+1+0.5+1+1+0.5+1+1+0.5+1+1$
$=10 \mathrm{~m}$
(c) The arrangement in the form of a cross has a greater perimeter.
(d) Perimeters greater than 10 m cannot be determined.

EXERCISE 10.2

1. Find the areas of the following figures by counting squares:

(a) The figure contains only 9 fully filled squares. Hence, the area of this figure will be 9 square units.
(b) The figure contains only 5 fully filled squares. Hence, the area of this figure will be 5 square units.
(c) The figure contains 2 fully filled squares and 4 half filled squares. Hence, the area of this figure will be 4 square units.
(d) The figure contains only 8 fully filled squares. Hence, the area of this figure will be 8 square units.
(e) The figure contains only 10 fully filled squares. Hence, the area of this figure will be 10 square units.
(f) The figure contains only 2 fully filled squares and 4 half filled squares. Hence, the area of this figure will be 4 square units.
(g) The figure contains 4 fully filled squares and 4 half filled squares. Hence, the area of this figure will be 6 square units.
(h) The figure contains 5 fully filled squares. Hence, the area of this figure will be 5 square units.
(i) The figure contains 9 fully filled squares. Hence, the area of this figure will be 9 square units.
(j) The figure contains 2 fully filled squares and 4 half filled squares. Hence, the area of this figure will be 4 square units.
(k) The figure contains 4 fully filled squares and 2 half filled squares. Hence, the area of this figure will be 5 square units.
(l) From the given figure, we observe

Covered Area	Number	Area Estimate (square units)
Fully filled squares	2	2
Half filled squares	-	-
More than half filled squares	6	6
Less than half filled squares	6	0

Therefore total area $=2+6$
$=8$ square units.
(m) From the given figure, we observe

Covered Area	Number	Area Estimate (square units)
Fully filled squares	5	5

Half filled squares	-	-
More than half filled squares	9	9
Less than half filled squares	12	0

Therefore total area $=5+9$
$=14$ square units
(n) From the given figure, we observe

Covered Area	Number	Area estimate (square units)
Fully filled squares	8	8
Half filled squares	-	-
More than half filled squares	10	10
Less than half filled squares	9	0

Therefore total area $=8+10=18$ square units

EXERCISE 10.3

1. Find the area of the rectangles whose sides are:
(a) $\mathbf{3 \mathrm { cm }}$ and 4 cm
(b) $\mathbf{1 2} \mathbf{~ m}$ and 21 m
(c) $2 \mathbf{k m}$ and $\mathbf{3 k m}$
(d) 2 m and 70 cm

Solutions:
We know that
Area of rectangle $=$ Length \times Breadth
(a) $\mathrm{l}=3 \mathrm{~cm}$ and $\mathrm{b}=4 \mathrm{~cm}$

Area $=1 \times b=3 \times 4$
$=12 \mathrm{~cm}^{2}$
(b) $\mathrm{l}=12 \mathrm{~m}$ and $\mathrm{b}=21 \mathrm{~m}$

Area $=1 \times b=12 \times 21$
$=252 \mathrm{~m}^{2}$
(c) $1=2 \mathrm{~km}$ and $\mathrm{b}=3 \mathrm{~km}$

Area $=1 \times b=2 \times 3$
$=6 \mathrm{~km}^{2}$
(d) $\mathrm{l}=2 \mathrm{~m}$ and $\mathrm{b}=70 \mathrm{~cm}=0.70 \mathrm{~m}$

Area $=1 \times b=2 \times 0.70$
$=1.40 \mathrm{~m}^{2}$
2. Find the areas of the squares whose sides are:
(a) 10 cm
(b) 14 cm
(c) 5 m

Solutions:
(a) Area of square $=$ side 2
$=10^{2}$
$=100 \mathrm{~cm}^{2}$
(b) Area of square $=$ side 2
$=14^{2}$
$=196 \mathrm{~cm}^{2}$
(c) Area of square $=\operatorname{side}^{2}$
$=5^{2}$
$=25 \mathrm{~cm}^{2}$
3. The length and breadth of the three rectangles are as given below:
(a) 9 m and 6 m
(b) $\mathbf{1 7} \mathbf{m}$ and $\mathbf{3} \mathbf{~ m}$
(c) 4 m and 14 m

Which one has the largest area, and which one has the smallest?

Solutions:

(a) Area of rectangle $=1 \times b$
$=9 \times 6$
$=54 \mathrm{~m}^{2}$
(b) Area of rectangle $=1 \times b$
$=17 \times 3$
$=51 \mathrm{~m}^{2}$
(c) Area of rectangle $=1 \times b$
$=4 \times 14$
$=56 \mathrm{~m}^{2}$

The area of rectangle $56 \mathrm{~m}^{2}$, i.e. (c), is the largest area and the area of rectangle $51 \mathrm{~m}^{2}$, i.e. (b), is the smallest area
4. The area of a rectangular garden 50 m long is 300 sq m . Find the width of the garden.

Solutions:

Area of rectangle $=$ length \times width
$300=50 \times$ width
width $=300 / 50$
width $=6 \mathrm{~m}$
\therefore The width of the garden is 6 m .
5. What is the cost of tiling a rectangular plot of land 500 m long and 200 m wide at the rate of ₹ 8 per hundred sq \mathbf{m} ?

Solutions:
Area of land $=$ length \times breadth
$=500 \times 200$
$=1,00,000 \mathrm{~m}^{2}$
\therefore Cost of tiling $1,00,000 \mathrm{sq} \mathrm{m}$ of land $=(8 \times 1,00,000) / 100$
$=₹ 8000$
\therefore The cost of tiling a rectangular plot of land is ₹ 8000 .
6. A tabletop measures 2 m by 1 m 50 cm . What is its area in square metres?

Solutions:

Given
$1=2 \mathrm{~m}$
$\mathrm{b}=1 \mathrm{~m} 50 \mathrm{~cm}=1.50 \mathrm{~m}$

Area $=1 \times b=2 \times 1.50$
$=3 \mathrm{~m}^{2}$
\therefore The area of the tabletop is $3 \mathrm{~m}^{2}$.
7. A room is 4 m long and 3 m 50 cm wide. How many square metres of carpet are needed to cover the floor of the room?

Solutions:

Given
$1=4 \mathrm{~m}$
$\mathrm{b}=3 \mathrm{~m} \mathrm{50} \mathrm{cm}=3.50 \mathrm{~m}$

Area $=1 \times b=4 \times 3.50$
$=14 \mathrm{~m}^{2}$
\therefore The carpet required to cover the floor is $14 \mathrm{~m}^{2}$.
8. A floor is 5 m long and 4 m wide. A square carpet of sides $\mathbf{3} \mathbf{~ m}$ is laid on the floor. Find the area of the floor that is not carpeted.

Solutions:

Area of floor $=1 \times b=5 \times 4$
$=20 \mathrm{~m}^{2}$
Area of square carpet $=3 \times 3$
$=9 \mathrm{~m}^{2}$

Area of floor that is not carpeted $=20-9$
$=11 \mathrm{~m}^{2}$
\therefore The area of the floor that is not carpeted is $11 \mathrm{~m}^{2}$.
9. Five square flower beds, each of sides 1 m , are dug on a piece of land 5 m long and 4 m wide. What is the area of the remaining part of the land?

Solutions:

Area of flower square bed $=1 \times 1$
$=1 \mathrm{~m}^{2}$
Area of 5 square bed $=1 \times 5$
$=5 \mathrm{~m}^{2}$

Area of land $=5 \times 4$
$=20 \mathrm{~m}^{2}$
Remaining part of the land $=$ Area of land - Area of 5 square bed
$=20-5$
$=15 \mathrm{~m}^{2}$
\therefore The remaining part of the land is $15 \mathrm{~m}^{2}$.
10. By splitting the following figures into rectangles, find their areas (The measures are given in centimetres).

(a)
(b)

Solutions:
(a)

Area of yellow region $=3 \times 3$
$=9 \mathrm{~cm}^{2}$

Area of orange region $=1 \times 2$
$=2 \mathrm{~cm}^{2}$
Area of grey region $=3 \times 3$
$=9 \mathrm{~cm}^{2}$

Area of brown region $=2 \times 4$
$=8 \mathrm{~cm}^{2}$
Total area $=9+2+9+8$
$=28 \mathrm{~cm}^{2}$
\therefore The total area is $28 \mathrm{~cm}^{2}$.
(b)

Area of brown region $=3 \times 1$
$=3 \mathrm{~cm}^{2}$

Area of orange region $=3 \times 1$
$=3 \mathrm{~cm}^{2}$
Area of grey region $=3 \times 1$
$=3 \mathrm{~cm}^{2}$
Total area $=3+3+3$
$=9 \mathrm{~cm}^{2}$
\therefore The total area is $9 \mathrm{~cm}^{2}$.
11. Split the following shapes into rectangles and find their areas. (The measures are given in centimetres)

Solutions:
(a)

Total area of the figure $=12 \times 2+8 \times 2$
$=40 \mathrm{~cm}^{2}$
(b)

There are 5 squares, and each side is 7 cm .
Area of 5 squares $=5 \times 7^{2}$
$=245 \mathrm{~cm}^{2}$
(c)

Area of grey rectangle $=2 \times 1$
$=2 \mathrm{~cm}^{2}$
Area of brown rectangle $=2 \times 1$
$=2 \mathrm{~cm}^{2}$
Area of orange rectangle $=5 \times 1$
$=5 \mathrm{~cm}^{2}$
Total area $=2+2+5$
$=9 \mathrm{~cm}^{2}$
12. How many tiles whose length and breadth are 12 cm and 5 cm , respectively, will be needed to fit in a rectangular region whose length and breadth are respectively:
(a) 100 cm and 144 cm ?
(b) 70 cm and 36 cm ?

Solutions:

(a) Area of rectangle $=100 \times 144$
$=14400 \mathrm{~cm}$

Area of one tile $=5 \times 12$
$=60 \mathrm{~cm}^{2}$
Number of tiles $=($ Area of rectangle $) /($ Area of one tile $)$
$=14400 / 60$
$=240$
Hence, 240 tiles are needed
(b) Area of rectangle $=70 \times 36$
$=2520 \mathrm{~cm}^{2}$
Area of one tile $=5 \times 12$
$=60 \mathrm{~cm}^{2}$
Number of tiles $=($ Area of rectangle $) /($ Area of one tile $)$
$=2520 / 60$
$=42$
Hence, 42 tiles are needed.

