EXERCISE 14.6

1. Draw $\angle \mathrm{POQ}$ of measure 75° and find its line of symmetry.

Solutions:

Following steps are followed to construct an angle of 75° and its line of symmetry
(i) Draw a line 1 and mark two points O and Q on it. Draw an arc of convenient radius, while taking centre as O. Let this intersect line 1 at R
(ii) Taking R as centre and with same radius as before, draw an arc such that it is intersecting the previously drawn arc at S
(iii) By taking same radius as before and S as centre, draw an arc intersecting the arc at point T as shown in figure
(iv) Take S and T as centre, draw an arc of same radius such that they intersect each other at U
(v) Join OU. Let it intersect the arc at V. Now, take S and V as centres draw arcs with radius more than $1 / 2$ SV. Let these intersect each other at P. Join OP. Now OP is the ray making 75° with the line 1 .
(vi) Let this ray intersect our major arc at point W . By taking R and W as centres, draw arcs with radius more than $1 / 2$ RW in the interior angle of 75°. Let these intersect each other at point X. Join OX

OX is the line of symmetry for the $\angle \mathrm{POQ}=75^{\circ}$

2. Draw an angle of measure 147° and construct its bisector.

Solutions:

Following steps are followed to construct an angle of measure 147° and its bisector
(i) Draw a line 1 and mark point O on it. Place the centre of protractor at point O and the zero edge along line 1
(ii) Mark a point A at an angle of measure 147°. Join OA. Now OA is the required ray making 147° with line 1
(iii) By taking point O as centre, draw an arc of convenient radius. Let this intersect both rays of angle 147° at points A and B.
(iv) By taking A and B as centres draw arcs of radius more than $1 / 2 \mathrm{AB}$ in the interior angle of 147°. Let these intersect each other at point C. Join OC.

OC is the required bisector of 147° angle

3. Draw a right angle and construct its bisector.

Solutions:

Following steps are followed to construct a right angle and its bisector.
(i) Draw a line 1 and mark a point P on it. Draw an arc of convenient radius by taking point P as centre. Let this intersect line 1 at R
(ii) Draw an arc by taking R as centre and with the same radius as before such that it is intersecting the previously drawn arc at S
(iii) Take S as centre and with the same radius as before, draw an arc intersecting the arc at T as shown in figure
(iv) By taking S and T as centres draw arcs of same radius such that they are intersecting each other at U .
(v) Join PU. PU is the required ray making a right angle with the line l. Let this intersect major arc at point V.
(vi) Now take R and V as centres, draw arcs with radius more than $1 / 2 \mathrm{RV}$ to intersect each other at point W . Join PW.

PW is the required bisector of this right angle.

4. Draw an angle of measure 153° and divide it into four equal parts.

Solutions:

Following steps are followed to construct an angle of measure 153° and its bisector
(i) Draw a line 1 and mark a point O on it. Place the centre of protractor at point O and the zero edge along line l
(ii) Mark a point A at the measure of angle 153°. Join OA. Now OA is the required ray making 153° with line 1
(iii) Draw an arc of convenient radius by taking point O as centre. Let this intersects both rays of angle 153° at points A and B.
(iv) Take A and B as centres and draw arcs of radius more than $1 / 2 \mathrm{AB}$ in the interior of angle of 153°. Let these intersect each other at C. Join OC
(v) Let OC intersect major arc at point D . Draw arcs of radius more than $1 / 2 \mathrm{AD}$ with A and D as centres and also D and B as centres. Let these are intersecting each other at points E and F respectively. Now join OE and OF
$\mathrm{OF}, \mathrm{OC}, \mathrm{OE}$ are the rays dividing 153° angle into four equal parts.

5. Construct with ruler and compasses, angles of following measures:
(a) 60°
(b) 30°
(c) 90°
(d) 120°
(e) 45°
(f) 135°

Solutions:
(a) 60°

Following steps are followed to construct an angle of 60°
(i) Draw a line 1 and mark a point P on it. Take P as centre and with convenient radius, draw an arc of a circle such that it intersects the line 1 at Q .
(ii) Take Q as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at point R .

The Learning App
(iii) Join PR. PR is the required ray making 60° with the line 1.

(b) 30°

Following steps are followed to construct an angle of 30°
(i) Draw a line 1 and mark a point P on it. By taking P as centre and with convenient radius, draw an arc of a circle such that it is intersecting the line 1 at Q .
(ii) Take Q as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at point R .
(iii) By taking Q and R as centres and with radius more than $1 / 2 \mathrm{RQ}$ draw arcs such that they are intersecting each other at S . Join PS which is the required ray making 30° with the line 1.

(c) 90°

Following steps are followed to construct an angle of measure 90°
(i) Draw a line 1 and mark a point P on it. Take P as centre and with convenient radius, draw an arc of a circle such that it is intersecting the line 1 at Q .
(ii) Take Q as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at R
(iii) By taking R as centre and with the same radius as before, draw an arc intersecting the arc at S as shown in figure
(iv) Now take R and S as centre, draw arc of same radius to intersect each other at T .
(v) Join PT, which is the required ray making 90° with the line 1 .

(d) 120°

Following steps are followed to construct an angle of measure 120°
(i) Draw a line 1 and mark a point P on it. Taking P as centre and with convenient radius, draw an arc of circle such that it is intersecting the line 1 at Q .
(ii) By taking Q as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at R .
(iii) Take R as centre and with the same radius as before, draw an arc such that it is intersecting the arc at S as shown in figure.
(iv) Join PS, which is the required ray making 120° with the line 1

(e) 45°

Following steps are followed to construct an angle of measure 45°
(i) Draw a line 1 and mark a point P on it. Take P as centre and with convenient radius, draw an arc of a circle such that it is intersecting the line 1 at Q .
(ii) Take Q as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at R
(iii) By taking R as centre and with the same radius as before, draw an arc such that it is intersecting the arc at S as shown in figure.
(iv) Take R and S as centres and draw arcs of same radius such that they are intersecting each other at T
(v) Join PT. Let this intersect the major arc at point U.
(vi) Now take Q and U as centres and draw arcs with radius more than $1 / 2 \mathrm{QU}$ to intersect each other at point V. Join PV.

PV is the required ray making 45° with the line 1

(f) 135°

Following steps are followed to construct an angle of measure 135°
(i) Draw a line 1 and mark a point P on it. Taking P as centre and with convenient radius, draw a semicircle which intersects the line 1 at Q and R respectively.
(ii) By taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S
(iii) Taking S as centre and with the same radius as before, draw an arc such that it is intersecting the arc at T as shown in figure
(iv) Take S and T as centres, draw arcs of same radius to intersect each other at U .
(v) Join PU. Let this intersect the arc at V. Now take Q and V as centres and with radius more than $1 / 2 \mathrm{QV}$, draw arcs to intersects each other at W.
(vi) Join PW which is the required ray making 135° with the line 1

6. Draw an angle of measure 45° and bisect it.

Solutions:

Following steps are followed to construct an angle of measure 45° and its bisector.
(i) Using the protractor $\angle \mathrm{POQ}$ of 45° measure may be formed on a line 1
(ii) Draw an arc of convenient radius with centre as O. Let this intersects both rays of angle 45° at points A and B
(iii) Take A and B as centres, draw arcs of radius more than $1 / 2 \mathrm{AB}$ in the interior of angle of 45°. Let these intersect each other at C. Join OC

OC is the required bisector of 45° angle

7. Draw an angle of measure 135° and bisect it.

Solutions:

Following steps are followed to construct an angle of measure 135° and its bisector.
(i) By using a protractor $\angle \mathrm{POQ}$ of 135° measure may be formed on a line 1
(ii) Draw an arc of convenient radius by taking O as centre. Let this intersect both rays of angle 135° at points A and B respectively.
(iii) Take A and B as centres, draw arcs of radius more than $1 / 2 \mathrm{AB}$ in the interior of angle of 135°. Let these intersect each other at C. Join OC.

OC is the required bisector of 135° angle

8. Draw an angle of 70°. Make a copy of it using only a straight edge and compasses.

Solutions:

Following steps are followed to construct an angle of measure 70° and its copy.
(i) Draw a line 1 and mark a point O on it. Now place the centre of protractor at point O and the zero edge along line 1 .
(ii) Mark a point A at an angle of measure 70°. Join OA. Now OA is the ray making 70° with line 1 . With point O as centre, draw an arc of convenient radius in the interior of 70° angle. Let this intersects both rays of angle 70° at points B and C respectively
(iii) Draw a line m and mark a point P on it. Again draw an arc with same radius as before and P as centre. Let it cut the line m at point D
(iv) Adjust the compasses up to the length of BC . With this radius draw an arc taking D as centre which intersects the previously drawn arc at point E .
(v) Join PE. Here PE is the required ray which makes same angle of measure 70° with the line m

9. Draw an angle of $\mathbf{4 0}$. Copy its supplementary angle.

Solutions:

Following steps are followed to construct an angle of measure 45° and a copy of its supplementary angle
(i) Draw a line segment
$\frac{\overline{P Q}}{P Q}$ and mark a point O on it. Place the centre of protractor at point O and the zero edge along line segment
(ii) Mark a point A at an angle of measure 40°. Join OA. Here OA is the required ray making 40° with $\overline{P Q} . \angle \mathrm{POA}$ is the supplementary angle of 40°
(iii) With point O as centre, draw an arc of convenient radius in the interior of $\angle \mathrm{POA}$. Let this intersects both rays of $\angle \mathrm{POA}$ at points B and C respectively.
(iv) Draw a line m and mark a point S on it. Again draw an arc by taking S as centre with the same radius as used before. Let it cut the line m at point T .
(v) Now adjust the compasses up to the length of BC. Taking T as centre draw an arc with this radius which will intersect the previously drawn arc at point R .
(vi) Join RS. Here RS is the required ray which makes same angle with the line m, as the supplementary of 40° [i.e 140°]

Disclaimer:
Dropped Topics - 14.1 Introduction, 14.2 The circle, 14.3 A line segment, 14.4 Perpendiculars, 14.5 Angles.

