EXERCISE 3.5

1. Which of the following statements is true?
(a) If a number is divisible by 3 , it must be divisible by 9 .
(b) If a number is divisible by 9 , it must be divisible by 3 .
(c) A number is divisible by 18 , if it is divisible by both 3 and 6 .
(d) If a number is divisible by 9 and 10 , then it must be divisible by 90 .
(e) If two numbers are co-primes, at least one of them must be prime.
(f) All numbers which are divisible by 4 must also be divisible by 8 .
(g) All numbers which are divisible by 8 must also be divisible by 4 .
(h) If a number exactly divides two numbers separately, it must exactly divide their sum.
(i) If a number exactly divides the sum of two numbers, it must exactly divide the two numbers separately.

Solutions:

(a) False, 6 is divisible by 3 but is not divisible by 9
(b) True, as $9=3 \times 3$. Hence, if a number is divisible by 9 , it will also be divisible by 3
(c) False. Since 30 is divisible by both 3 and 6 but is not divisible by 18
(d) True, as $9 \times 10=90$. Hence, if a number is divisible by both 9 and 10 then it is divisible by 90
(e) False. Since 15 and 32 are co-primes and also composite numbers
(f) False, as 12 is divisible by 4 but is not divisible by 8
(g) True, as $2 \times 4=8$. Hence, if a number is divisible by 8 , it will also be divisible by 2 and 4
(h) True, as 2 divides 4 and 8 , and it also divides $12(4+8=12)$
(i) False, since 2 divides 12 but it does not divide 7 and 5
2. Here are two different factor trees for $\mathbf{6 0}$. Write the missing numbers.
(a)

(b)

Solutions:
(a) Since $6=2 \times 3$ and $10=5 \times 2$

(b) Since $60=30 \times 2$
$30=10 \times 3$
$10=5 \times 2$

3. Which factors are not included in the prime factorisation of a composite number?

Solutions:

1 and the number itself are not included in the prime factorisation of a composite number.
4. Write the greatest 4-digit number and express it in terms of its prime factors.

Solutions:

The greatest four-digit number is 9999
Therefore $9999=3 \times 3 \times 11 \times 101$

5. Write the smallest 5-digit number and express it in the form of its prime factors.

Solutions:

The smallest five-digit number $=10000$

$10000=2 \times 2 \times 2 \times 2 \times 5 \times 5 \times 5 \times 5$
6. Find all the prime factors of 1729 and arrange them in ascending order. Now state the relation, if any, between two consecutive prime factors.

Solutions:

7	1729
13	247
19	19
	1

$13-7=6$
$19-13=6$
Hence, the difference between two consecutive prime factors is 6 .
7. The product of three consecutive numbers is always divisible by 6 . Verify this statement with the help of some examples.

Solutions:

(i) $2 \times 3 \times 4=24$ which is divisible by 6
(ii) $5 \times 6 \times 7=210$ which is divisible by 6
8. The sum of two consecutive odd numbers is divisible by 4 . Verify this statement with the help of some examples.

Solutions:

(i) $5+3=8$ which is divisible by 4
(ii) $7+9=16$ which is divisible by 4
(iii) $13+15=28$ which is divisible by 4
9. In which of the following expressions has prime factorisation been done?
(a) $24=2 \times 3 \times 4$
(b) $56=7 \times 2 \times 2 \times 2$
(c) $70=2 \times 5 \times 7$
(d) $54=2 \times 3 \times 9$

Solutions:
(a) $24=2 \times 3 \times 4$

Since 4 is composite. Hence, prime factorisation has not been done
(b) $56=7 \times 2 \times 2 \times 2$

Since all the factors are prime. Hence, prime factorisation has been done
(c) $70=2 \times 5 \times 7$

Since all the factors are prime. Hence, prime factorisation has been done
(d) $54=2 \times 3 \times 9$

Since 9 is composite. Hence prime factorisation has not been done
10. Determine if $\mathbf{2 5 1 1 0}$ is divisible by 45 . [Hint: 5 and 9 are co-prime numbers. Test the divisibility of the number by 5 and 9].

Solutions:

$45=5 \times 9$
1,5 are factors of 5
$1,3,9$ are factors of 9
Hence, 5 and 9 are co-prime numbers
The last digit of 25110 is 0 . Hence, it is divisible by 5
Sum of digits 25110
$2+5+1+1+0$
$=9$
Since the sum of digits of 25110 is divisible by 9 . Hence, 25110 is divisible by 9
Since the number is divisible by both 5 and 9
Therefore 25110 is divisible by 45
11. 18 is divisible by both 2 and 3 . It is also divisible by $2 \times 3=6$. Similarly, a number is divisible by both 4 and 6. Can we say that the number must also be divisible by $4 \times 6=24$? If not, give an example to justify your answer.

Solutions:

No, since 12 and 36 are both divisible by 4 and 6 . But 12 and 36 are not divisible by 24
12. I am the smallest number, having four different prime factors. Can you find me?

Solutions:
Since it is the smallest number. Therefore it will be the product of 4 smallest prime numbers
$2 \times 3 \times 5 \times 7=210$

