## EXERCISE 10.3

1. Construct $\triangle D E F$ such that $D E=5 \mathrm{~cm}, \mathrm{DF}=3 \mathrm{~cm}$ and $\mathrm{m} \angle E D F=90^{\circ}$.

Solution:-


Steps of construction

1. Draw a line segment $D F=3 \mathrm{~cm}$.
2. At point D , draw a ray DX to making an angle of $90^{\circ}$ i.e., $\angle \mathrm{XDF}=90^{\circ}$.
3. Along $D X$, set off $D E=5 \mathrm{~cm}$.
4. Join EF.

Then, $\triangle E D F$ is the required right-angled triangle.
2. Construct an isosceles triangle in which the lengths of each of its equal sides is 6.5 cm and the angle between them is $110^{\circ}$.

## Solution:-



Steps of construction

1. Draw a line segment $A B=6.5 \mathrm{~cm}$.
2. At point $A$, draw a ray $A X$ to making an angle of $110^{\circ}$, i.e., $\angle X A B=110^{\circ}$.
3. Along $A X$, set off $A C=6.5 \mathrm{~cm}$.
4. Join CB.

Then, $\triangle \mathrm{ABC}$ is the required isosceles triangle.
3. Construct $\triangle A B C$ with $B C=7.5 \mathrm{~cm}, A C=5 \mathrm{~cm}$ and $\mathrm{m} \angle \mathrm{C}=60^{\circ}$.

Solution:-


Steps of construction

1. Draw a line segment $B C=7.5 \mathrm{~cm}$.
2. At point $C$, draw a ray $C X$ to making an angle of $60^{\circ}$, i.e., $\angle X C B=60^{\circ}$.
3. Along $C X$, set off $A C=5 \mathrm{~cm}$.
4. Join AB.

Then, $\triangle \mathrm{ABC}$ is the required triangle.

