1. Draw a line, say $A B$, take a point C outside it. Through C, draw a line parallel to $A B$ using ruler and compasses only.

Solution:-

Steps for construction

1. Draw a line $A B$.
2. Take any point Q on $A B$ and a point P outside $A B$ and join $P Q$.
3. With Q as the centre and any radius, draw an arc to cut $A B$ at E and $P Q$ at F.
4. With P as the centre and the same radius, draw an arc IJ to cut QP at G.
5. Place the pointed tip of the compass at E and adjust the opening so that the pencil tip is at F .
6. With the same opening as in step 5 and with G as the centre, draw an arc cutting the arc IJ at H .
7. Now, join PH to draw a line CD.
8. Draw a line L. Draw a perpendicular to L at any point on L. On this perpendicular, choose a point $X, 4 \mathrm{~cm}$ away from I. Through X, draw a line m parallel to L.

Solution:-

Steps for construction

1. Draw a line L.
2. Take any point P on line L.
3. At point P, draw a perpendicular line N.
4. Place the pointed tip of the compass at P and adjust the compass up to length of 4 cm , draw an arc to cut this perpendicular at point X.
5. At point X, again draw a perpendicular line M.
6. Let L be a line and P be a point not on L. Through P, draw a line m parallel to L. Now join P to any point Q on L. Choose any other point R on m. Through R, draw a line parallel to PQ. Let this meet L at S . What shape do the two sets of parallel lines enclose?

Solution:-

Steps for construction

1. Draw a line L.
2. Take any point Q on L and a point P outside L and join $P Q$.
3. Make sure that angles at point P and point Q are equal, i.e., $\angle Q=\angle P$
4. At point P, extend the line to get line M which is parallel L.
5. Then take any point R on line M.
6. At point R, draw an angle such that $\angle P=\angle R$.
7. At point R, extend the line which intersects line L at S and draw a line $R S$.

EXERCISE 10.2

1. Construct $\triangle X Y Z$ in which $X Y=4.5 \mathrm{~cm}, Y Z=5 \mathrm{~cm}$ and $Z X=6 \mathrm{~cm}$.

Solution:-

Steps of construction

1. Draw a line segment $Y Z=5 \mathrm{~cm}$.
2. With Z as a centre and radius 6 cm , draw an arc.
3. With Y as a centre and radius 4.5 cm , draw another arc, cutting the previous arc at X .
4. Join $X Y$ and $X Z$.

Then, $\triangle \mathrm{XYZ}$ is the required triangle.
2. Construct an equilateral triangle of side 5.5 cm .

Solution:-

Steps of construction

1. Draw a line segment $A B=5.5 \mathrm{~cm}$.
2. With A as a centre and radius 5.5 cm , draw an arc.
3. With B as a centre and radius 5.5 cm , draw another arc, cutting the previous arc at C.
4. Join CA and CB.

Then, $\triangle \mathrm{ABC}$ is the required equilateral triangle.
3. Draw $\triangle P Q R$ with $P Q=4 \mathrm{~cm}, Q R=3.5 \mathrm{~cm}$ and $P R=4 \mathrm{~cm}$. What type of triangle is this?

Solution:-

Steps of construction

1. Draw a line segment $Q R=3.5 \mathrm{~cm}$.
2. With Q as a centre and radius 4 cm , draw an arc.
3. With R as a centre and radius 4 cm , draw another arc, cutting the previous arc at P.
4. Join $P Q$ and $P R$.

Then, $\triangle P Q R$ is the required isosceles triangle.
4. Construct $\triangle A B C$, such that $A B=2.5 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $A C=6.5 \mathrm{~cm}$. Measure $\angle B$.

Solution:-

The Learning App

1. Draw a line segment $B C=6 \mathrm{~cm}$.
2. With B as a centre and radius 2.5 cm , draw an arc.
3. With C as a centre and radius 6.5 cm , draw another arc, cutting the previous arc at A .
4. Join $A B$ and $A C$.

Then, $\triangle \mathrm{ABC}$ is the required triangle.
5. When we will measure the angle B of triangle by a protractor, the angle is equal to $\angle B=90^{\circ}$

EXERCISE 10.3

1. Construct $\triangle D E F$ such that $D E=5 \mathrm{~cm}, \mathrm{DF}=3 \mathrm{~cm}$ and $\mathrm{m} \angle E D F=90^{\circ}$.

Solution:-

Steps of construction

1. Draw a line segment $D F=3 \mathrm{~cm}$.
2. At point D , draw a ray DX to making an angle of 90° i.e., $\angle \mathrm{XDF}=90^{\circ}$.
3. Along $D X$, set off $D E=5 \mathrm{~cm}$.
4. Join EF.

Then, $\triangle E D F$ is the required right-angled triangle.
2. Construct an isosceles triangle in which the lengths of each of its equal sides is 6.5 cm and the angle between them is 110°.

Solution:-

Steps of construction

1. Draw a line segment $A B=6.5 \mathrm{~cm}$.
2. At point A, draw a ray $A X$ to making an angle of 110°, i.e., $\angle X A B=110^{\circ}$.
3. Along $A X$, set off $A C=6.5 \mathrm{~cm}$.
4. Join CB.

Then, $\triangle \mathrm{ABC}$ is the required isosceles triangle.
3. Construct $\triangle A B C$ with $B C=7.5 \mathrm{~cm}, A C=5 \mathrm{~cm}$ and $\mathrm{m} \angle \mathrm{C}=60^{\circ}$.

Solution:-

Steps of construction

1. Draw a line segment $B C=7.5 \mathrm{~cm}$.
2. At point C, draw a ray $C X$ to making an angle of 60°, i.e., $\angle X C B=60^{\circ}$.
3. Along $C X$, set off $A C=5 \mathrm{~cm}$.
4. Join AB.

Then, $\triangle \mathrm{ABC}$ is the required triangle.

EXERCISE 10.4

1. Construct $\triangle A B C$, given $m \angle A=60^{\circ}, m \angle B=30^{\circ}$ and $A B=5.8 \mathrm{~cm}$.

Solution:-

Steps of construction:

1. Draw a line segment $A B=5.8 \mathrm{~cm}$.
2. At point A , draw a ray P to making an angle of 60°, i.e., $\angle P A B=60^{\circ}$.
3. At point B, draw a ray Q to making an angle of 30°, i.e., $\angle Q B A=30^{\circ}$.
4. Now, the two rays - AP and BQ - intersect at point C .

Then, $\triangle \mathrm{ABC}$ is the required triangle.
2. Construct $\triangle P Q R$ if $P Q=5 \mathrm{~cm}, \mathrm{~m} \angle P Q R=105^{\circ}$ and $\mathrm{m} \angle \mathrm{QRP}=40^{\circ}$.
(Hint: Recall angle-sum property of a triangle).
Solution:-

We know that the sum of the angles of a triangle is 180°.
$\therefore \angle \mathrm{PQR}+\angle \mathrm{QRP}+\angle \mathrm{RPQ}=180^{\circ}$
$=105^{\circ}+40^{\circ}+\angle R P Q=180^{\circ}$
$=145^{\circ}+\angle \mathrm{RPQ}=180^{\circ}$
$=\angle R P Q=180^{\circ}-145^{\circ}$
$=\angle \mathrm{RPQ}=35^{\circ}$
Hence, the measures of $\angle R P Q$ is 35°.
Steps of construction

1. Draw a line segment $P Q=5 \mathrm{~cm}$.
2. At point P, draw a ray L to making an angle of 105°, i.e., $\angle L P Q=35^{\circ}$.
3. At point Q, draw a ray M to making an angle of 40°, i.e., $\angle \mathrm{MQP}=105^{\circ}$.
4. Now, the two rays - PL and QM - intersect at point R .

Then, $\triangle P Q R$ is the required triangle.
3. Examine whether you can construct $\triangle D E F$, such that $E F=7.2 \mathrm{~cm}, \mathrm{~m} \angle \mathrm{E}=110^{\circ}$ and $\mathrm{m} \angle \mathrm{F}=80^{\circ}$. Justify your answer.

Solution:-

From the question, it is given that
$\mathrm{EF}=7.2 \mathrm{~cm}$
$\angle E=110^{\circ}$
$\angle \mathrm{F}=80^{\circ}$
Now, we have to check whether it is possible to construct $\triangle \mathrm{DEF}$ from the given values.
We know that the sum of the angles of a triangle is 180°.
Then,

```
\angleD+\angleE+\angleF=180
\angleD + 110' + 80 }=18\mp@subsup{0}{}{\circ
\angleD+190}=18\mp@subsup{0}{}{\circ
\angleD = 180
\angleD = -10'
```

We may observe that the sum of two angles is 190° is greater than 180°. So, it is not possible to construct a triangle.

EXERCISE 10.5

PAGE: 203

1. Construct the right-angled $\triangle P Q R$, where $m \angle Q=90^{\circ}, Q R=8 \mathrm{~cm}$ and $P R=10 \mathrm{~cm}$.

Solution:-

Steps of construction

1. Draw a line segment $Q R=8 \mathrm{~cm}$.
2. At point Q, draw a ray QY to making an angle of 90°, i.e., $\angle Y Q R=90^{\circ}$.
3. With R as a centre and radius 10 cm , draw an arc that cuts the ray $Q Y$ at P.
4. Join PR.

Then, $\triangle \mathrm{PQR}$ is the required right-angled triangle.
2. Construct a right-angled triangle whose hypotenuse is 6 cm long and one of the legs is 4 cm long

Solution:-

Let us consider $\triangle A B C$ is a right-angled triangle at $\angle B=90^{\circ}$
Then,
$A C$ is hypotenuse $=6 \mathrm{~cm} \ldots$... [Given in the question]
$B C=4 \mathrm{~cm}$
Now, we have to construct the right-angled triangle by using the above values.

Steps of construction

1. Draw a line segment $B C=4 \mathrm{~cm}$.
2. At point B, draw a ray $B X$ to making an angle of 90°, i.e., $\angle X B C=90^{\circ}$.
3. With C as a centre and radius 6 cm , draw an arc that cuts the ray $B X$ at A.
4. Join AC.

Then, $\triangle \mathrm{ABC}$ is the required right-angled triangle.
3. Construct an isosceles right-angled triangle $A B C$, where $m \angle A C B=90^{\circ}$ and $A C=6 \mathrm{~cm}$.

Solution:-

Steps of construction

1. Draw a line segment $B C=6 \mathrm{~cm}$.
2. At point C, draw a ray $C X$ to making an angle of 90°, i.e., $\angle X C B=90^{\circ}$.
3. With C as a centre and radius 6 cm , draw an arc that cuts the ray $C X$ at A.
4. Join $A B$.

Then, $\triangle \mathrm{ABC}$ is the required right-angled triangle.

