1. Find the area of each of the following parallelograms.
(a)

Solution:-
From the figure,
Height of parallelogram $=4 \mathrm{~cm}$
Base of parallelogram $=7 \mathrm{~cm}$
Then,
Area of parallelogram $=$ Base \times Height
$=7 \times 4$
$=28 \mathrm{~cm}^{2}$
(b)

Solution:-

From the figure,
Height of parallelogram $=3 \mathrm{~cm}$
Base of parallelogram $=5 \mathrm{~cm}$
Then,
Area of parallelogram $=$ Base \times Height
$=5 \times 3$
$=15 \mathrm{~cm}^{2}$
(c)

Solution:-

From the figure,
Height of parallelogram $=3.5 \mathrm{~cm}$
Base of parallelogram $=2.5 \mathrm{~cm}$
Then,
Area of parallelogram $=$ Base \times Height
$=2.5 \times 3.5$
$=8.75 \mathrm{~cm}^{2}$
(d)

Solution:-

From the figure,
Height of parallelogram $=4.8 \mathrm{~cm}$
Base of parallelogram $=5 \mathrm{~cm}$
Then,
Area of parallelogram $=$ Base \times Height
$=5 \times 4.8$
$=24 \mathrm{~cm}^{2}$
(e)

Solution:-

From the figure,
Height of parallelogram $=4.4 \mathrm{~cm}$
Base of parallelogram $=2 \mathrm{~cm}$
Then,
Area of parallelogram $=$ Base \times Height
$=2 \times 4.4$
$=8.8 \mathrm{~cm}^{2}$
2. Find the area of each of the following triangles.
(a)

Solution:-

From the figure,
Base of triangle $=4 \mathrm{~cm}$
Height of height $=3 \mathrm{~cm}$
Then,
Area of triangle $=1 / 2 \times$ Base \times Height
$=1 / 2 \times 4 \times 3$
$=1 \times 2 \times 3$
$=6 \mathrm{~cm}^{2}$
(b)

Solution:-

From the figure,
Base of triangle $=3.2 \mathrm{~cm}$
Height of height $=5 \mathrm{~cm}$

Then,
Area of triangle $=1 / 2 \times$ Base \times Height
$=1 / 2 \times 3.2 \times 5$
$=1 \times 1.6 \times 5$
$=8 \mathrm{~cm}^{2}$
(c)

Solution:-

From the figure,
Base of triangle $=3 \mathrm{~cm}$
Height of height $=4 \mathrm{~cm}$
Then,
Area of triangle $=1 / 2 \times$ Base \times Height
$=1 / 2 \times 3 \times 4$
$=1 \times 3 \times 2$
$=6 \mathrm{~cm}^{2}$
(d)

Solution:-

From the figure,
Base of triangle $=3 \mathrm{~cm}$
Height of height $=2 \mathrm{~cm}$
Then,
Area of triangle $=1 / 2 \times$ Base \times Height
$=1 / 2 \times 3 \times 2$
$=1 \times 3 \times 1$
$=3 \mathrm{~cm}^{2}$
3. Find the missing values.

S.No.	Base	Height	Area of the Parallelogram
a.	20 cm		$246 \mathrm{~cm}^{2}$
b.		15 cm	$154.5 \mathrm{~cm}^{2}$
c.		8.4 cm	$48.72 \mathrm{~cm}^{2}$
d.	15.6 cm		$16.38 \mathrm{~cm}^{2}$

Solution:-

(a)

From the table,
Base of parallelogram $=20 \mathrm{~cm}$
Height of parallelogram =?
Area of the parallelogram $=246 \mathrm{~cm}^{2}$
Then,

Area of parallelogram $=$ Base \times Height
$246=20 \times$ height
Height $=246 / 20$
Height $=12.3 \mathrm{~cm}$
\therefore Height of the parallelogram is 12.3 cm .
(b)

From the table,
Base of parallelogram $=$?
Height of parallelogram $=15 \mathrm{~cm}$
Area of the parallelogram $=154.5 \mathrm{~cm}^{2}$
Then,
Area of parallelogram $=$ Base \times Height
$154.5=$ base $\times 15$
Base $=154.5 / 15$
Base $=10.3 \mathrm{~cm}$
\therefore Base of the parallelogram is 10.3 cm .
(c)

From the table,
Base of parallelogram $=$?
Height of parallelogram $=8.4 \mathrm{~cm}$
Area of the parallelogram $=48.72 \mathrm{~cm}^{2}$
Then,
Area of parallelogram $=$ Base \times Height
$48.72=$ base $\times 8.4$
Base $=48.72 / 8.4$
Base $=5.8 \mathrm{~cm}$
\therefore Base of the parallelogram is 5.8 cm .
(d)

From the table,
Base of parallelogram $=15.6 \mathrm{~cm}$
Height of parallelogram =?
Area of the parallelogram $=16.38 \mathrm{~cm}^{2}$
Then,
Area of parallelogram $=$ Base \times Height
$16.38=15.6 \times$ height
Height $=16.38 / 15.6$
Height $=1.05 \mathrm{~cm}$
\therefore Height of the parallelogram is 1.05 cm .

S.No.	Base	Height	Area of the Parallelogram
a.	20 cm	12.3 cm	$246 \mathrm{~cm}^{2}$
b.	10.3 cm	15 cm	$154.5 \mathrm{~cm}^{2}$
c.	5.8 cm	8.4 cm	$48.72 \mathrm{~cm}^{2}$
d.	15.6 cm	1.05	$16.38 \mathrm{~cm}^{2}$

4. Find the missing values.

Base	Height	Area of Triangle
15 cm		$87 \mathrm{~cm}^{2}$

	31.4 mm	$1256 \mathrm{~mm}^{2}$
22 cm		$170.5 \mathrm{~cm}^{2}$

Solution:-

(a)

From the table,
Height of triangle $=$?
Base of triangle $=15 \mathrm{~cm}$
Area of the triangle $=16.38 \mathrm{~cm}^{2}$
Then,
Area of triangle $=1 / 2 \times$ Base \times Height
$87=1 / 2 \times 15 \times$ height
Height $=(87 \times 2) / 15$
Height $=174 / 15$
Height $=11.6 \mathrm{~cm}$
\therefore Height of the triangle is 11.6 cm .
(b)

From the table,
Height of triangle $=31.4 \mathrm{~mm}$
Base of triangle $=$?
Area of the triangle $=1256 \mathrm{~mm}^{2}$
Then,
Area of triangle $=1 / 2 \times$ Base \times Height
$1256=1 / 2 \times$ base $\times 31.4$
Base $=(1256 \times 2) / 31.4$
Base $=2512 / 31.4$

Base $=80 \mathrm{~mm}=8 \mathrm{~cm}$

\therefore Base of the triangle is 80 mm or 8 cm .
(c)

From the table,
Height of triangle $=$?
Base of triangle $=22 \mathrm{~cm}$
Area of the triangle $=170.5 \mathrm{~cm}^{2}$
Then,
Area of triangle $=1 / 2 \times$ Base \times Height
$170.5=1 / 2 \times 22 \times$ height
$170.5=1 \times 11 \times$ height
Height $=170.5 / 11$
Height $=15.5 \mathrm{~cm}$
\therefore Height of the triangle is 15.5 cm .
5. PQRS is a parallelogram (Fig 11.23). QM is the height from Q to $S R$, and $Q N$ is the height from Q to $P S$. If $S R=12 \mathrm{~cm}$ and $Q M=7.6 \mathrm{~cm}$. Find:
(a) The area of the parallelogram PQRS (b) QN, if PS $=8 \mathrm{~cm}$

Fig 11.23

Solution:-

From the question, it is given that
$\mathrm{SR}=12 \mathrm{~cm}, \mathrm{QM}=7.6 \mathrm{~cm}$
(a) We know that,

Area of the parallelogram $=$ Base \times Height
$=S R \times Q M$
$=12 \times 7.6$
$=91.2 \mathrm{~cm}^{2}$
(b) Area of the parallelogram $=$ Base \times Height

$$
91.2=\mathrm{PS} \times \mathrm{QN}
$$

$91.2=8 \times \mathrm{QN}$
$\mathrm{QN}=91.2 / 8$
$\mathrm{QN}=11.4 \mathrm{~cm}$
6. $D L$ and $B M$ are the heights on sides $A B$ and $A D$, respectively, of parallelogram $A B C D$ (Fig 11.24). If the area of the parallelogram is $1470 \mathrm{~cm}^{2}, A B=35 \mathrm{~cm}$ and $A D=49 \mathrm{~cm}$, find the length of BM and DL.

Fig 11.24

Solution:-

From the question, it is given that
Area of the parallelogram $=1470 \mathrm{~cm}^{2}$
$A B=35 \mathrm{~cm}$
$A D=49 \mathrm{~cm}$
Then,
We know that,
Area of the parallelogram $=$ Base \times Height
$1470=A B \times B M$
$1470=35 \times$ DL
$D L=1470 / 35$
$D L=42 \mathrm{~cm}$
And,
Area of the parallelogram $=$ Base \times Height
$1470=A D \times B M$
$1470=49 \times B M$
$B M=1470 / 49$
$\mathrm{BM}=30 \mathrm{~cm}$
7. $\triangle A B C$ is right-angled at A (Fig 11.25). $A D$ is perpendicular to $B C$. If $A B=5 \mathrm{~cm}, B C=13 \mathrm{~cm}$, and $A C$ $=12 \mathrm{~cm}$, find the area of $\triangle A B C$. Also, find the length of $A D$.

Fig 11.25
Solution:-
From the question, it is given that
$A B=5 \mathrm{~cm}, B C=13 \mathrm{~cm}, A C=12 \mathrm{~cm}$
Then,
We know that,
Area of the $\triangle A B C=1 / 2 \times$ Base \times Height
$=1 / 2 \times A B \times A C$
$=1 / 2 \times 5 \times 12$
$=1 \times 5 \times 6$
$=30 \mathrm{~cm}^{2}$
Now,
Area of $\triangle A B C=1 / 2 \times$ Base \times Height
$30=1 / 2 \times A D \times B C$
$30=1 / 2 \times A D \times 13$
$(30 \times 2) / 13=A D$
$A D=60 / 13$
$\mathrm{AD}=4.6 \mathrm{~cm}$
8. $\triangle A B C$ is isosceles with $A B=A C=7.5 \mathrm{~cm}$ and $B C=9 \mathrm{~cm}$ (Fig 11.26). The height $A D$ from A to $B C$ is 6 cm . Find the area of $\triangle A B C$. What will be the height from C to $A B$, i.e., $C E$?

Fig 11.26

Solution:-

From the question, it is given that
$A B=A C=7.5 \mathrm{~cm}, B C=9 \mathrm{~cm}, A D=6 \mathrm{~cm}$
Then,
Area of $\triangle A B C=1 / 2 \times$ Base \times Height
$=1 / 2 \times B C \times A D$
$=1 / 2 \times 9 \times 6$
$=1 \times 9 \times 3$
$=27 \mathrm{~cm}^{2}$

Now,
Area of $\triangle \mathrm{ABC}=1 / 2 \times$ Base \times Height
$27=1 / 2 \times A B \times C E$
$27=1 / 2 \times 7.5 \times C E$
$(27 \times 2) / 7.5=C E$
$C E=54 / 7.5$
$C E=7.2 \mathrm{~cm}$

