1. Find the circumference of the circle with the following radius. (Take $\boldsymbol{\pi}=\mathbf{2 2 / 7}$)
(a) 14 cm

Solution:-

Given, the radius of the circle $=14 \mathrm{~cm}$
Circumference of the circle $=2 \pi r$
$=2 \times(22 / 7) \times 14$
$=2 \times 22 \times 2$
$=88 \mathrm{~cm}$
(b) 28 mm

Solution:-

Given, the radius of the circle $=28 \mathrm{~mm}$
Circumference of the circle $=2 \pi r$
$=2 \times(22 / 7) \times 28$
$=2 \times 22 \times 4$
$=176 \mathrm{~mm}$
(c) 21 cm

Solution:-

Given, the radius of the circle $=21 \mathrm{~cm}$
Circumference of the circle $=2 \pi r$
$=2 \times(22 / 7) \times 21$
$=2 \times 22 \times 3$
$=132 \mathrm{~cm}$
2. Find the area of the following circles, given that
(a) Radius $=14 \mathrm{~mm}$ (Take $\boldsymbol{\pi}=22 / 7$)

Solution:
Given, the radius of the circle $=14 \mathrm{~mm}$
Then,
Area of the circle $=\pi r^{2}$
$=22 / 7 \times 14^{2}$
$=22 / 7 \times 196$
$=22 \times 28$
$=616 \mathrm{~mm}^{2}$
(b) Diameter $=49 \mathrm{~m}$

Solution:

Given, the diameter of the circle (d) $=49 \mathrm{~m}$
We know that radius $(r)=d / 2$
$=49 / 2$
$=24.5 \mathrm{~m}$
Then,
Area of the circle $=\pi r^{2}$
$=22 / 7 \times(24.5)^{2}$
$=22 / 7 \times 600.25$
$=22 \times 85.75$
$=1886.5 \mathrm{~m}^{2}$
(c) Radius $=5 \mathrm{~cm}$

Solution:
Given, the radius of the circle $=5 \mathrm{~cm}$
Then,

Area of the circle $=\pi r^{2}$
$=22 / 7 \times 5^{2}$
$=22 / 7 \times 25$
= 550/7
$=78.57 \mathrm{~cm}^{2}$
3. If the circumference of a circular sheet is 154 m , find its radius. Also, find the area of the sheet.
(Take $\pi=22 / 7$)

Solution:-

From the question, it is given that
Circumference of the circle $=154 \mathrm{~m}$
Then,
We know that the circumference of the circle $=2 \pi r$
$154=2 \times(22 / 7) \times r$
$154=44 / 7 \times r$
$r=(154 \times 7) / 44$
$r=(14 \times 7) / 4$
$r=(7 \times 7) / 2$
$r=49 / 2$
$r=24.5 \mathrm{~m}$
Now,
Area of the circle $=\pi r^{2}$
$=22 / 7 \times(24.5)^{2}$
$=22 / 7 \times 600.25$
$=22 \times 85.75$
$=1886.5 \mathrm{~m}^{2}$
So, the radius of the circle is 24.5 , and the area of the circle is 1886.5 .
4. A gardener wants to fence a circular garden of diameter 21 m . Find the length of the rope he needs to purchase, if he makes 2 rounds of the fence. Also, find the cost of the rope, if it costs ₹ 4 per meter. (Take $\pi=22 / 7$)

Solution:-

From the question, it is given that
Diameter of the circular garden $=21 \mathrm{~m}$
We know that radius $(r)=d / 2$
$=21 / 2$
$=10.5 \mathrm{~m}$
Then,
Circumference of the circle $=2 \pi r$
$=2 \times(22 / 7) \times 10.5$
$=462 / 7$
$=66 \mathrm{~m}$
So, the length of rope required $=2 \times 66=132 \mathrm{~m}$
Cost of 1 m rope = ₹ 4 [given]
Cost of 132 m rope $=₹ 4 \times 132$
= ₹ 528
5. From a circular sheet of radius 4 cm , a circle of radius 3 cm is removed. Find the area of the remaining sheet. (Take $\pi=3.14$)

Solution:-

From the question, it is given that
Radius of circular sheet $\mathrm{R}=4 \mathrm{~cm}$

A circle of radius to be removed $r=3 \mathrm{~cm}$
Then,
The area of the remaining sheet $=\pi R^{2}-\pi r^{2}$
$=\pi\left(R^{2}-r^{2}\right)$
$=3.14\left(4^{2}-3^{2}\right)$
$=3.14(16-9)$
$=3.14 \times 7$
$=21.98 \mathrm{~cm}^{2}$
So, the area of the remaining sheet is $21.98 \mathrm{~cm}^{2}$.
6. Saima wants to put lace on the edge of a circular table cover of diameter 1.5 m . Find the length of the lace required, and also, find its cost if one meter of the lace costs ₹ 15 . (Take $\boldsymbol{\pi}=3.14$)

Solution:-

From the question, it is given that
Diameter of the circular table $=1.5 \mathrm{~m}$
We know that radius $(r)=d / 2$
$=1.5 / 2$
$=0.75 \mathrm{~m}$
Then,
Circumference of the circle $=2 \pi r$
$=2 \times 3.14 \times 0.75$
$=4.71 \mathrm{~m}$
So, the length of the lace $=4.71 \mathrm{~m}$
Cost of 1 m lace = ₹ 15 [given]
Cost of 4.71 m lace $=₹ 15 \times 4.71$
= ₹ 70.65
7. Find the perimeter of the adjoining figure, which is a semicircle, including its diameter.

Solution:-

From the question, it is given that
Diameter of semi-circle $=10 \mathrm{~cm}$
We know that radius $(r)=d / 2$
= 10/2
$=5 \mathrm{~cm}$
Then,
Circumference of the semi-circle $=\pi r+2 r$
$=3.14(5)+2(5)$
$=5[3.14+2]$
$=5$ [5.14]
Therefore, the perimeter of the semicircle $=25.7 \mathrm{~cm}$
8. Find the cost of polishing a circular table top of diameter 1.6 m , if the rate of polishing is $₹ 15 / \mathrm{m}^{2}$. (Take $\boldsymbol{\pi}=3.14$)

Solution:-

From the question, it is given that
Diameter of the circular table-top $=1.6 \mathrm{~m}$
We know that radius $(r)=d / 2$
= 1.6/2
$=0.8 \mathrm{~m}$
Then,
Area of the circular table-top $=\pi r^{2}$
$=3.14 \times 0.8^{2}$
$=3.14 \times 0.8 \times 0.8$
$=2.0096 \mathrm{~m}^{2}$
Cost for polishing $1 \mathrm{~m}^{2}$ area = ₹ 15 [given]
Cost for polishing $2.0096 \mathrm{~m}^{2}$ area $=₹ 15 \times 2.0096$
= ₹ 30.144
Hence, the cost of polishing $2.0096 \mathrm{~m}^{2}$ area is ₹ 30.144 .
9. Shazli took a wire of length 44 cm and bent it into the shape of a circle. Find the radius of that circle. Also, find its area. If the same wire is bent into the shape of a square, what will be the length of each of its sides? Which figure encloses more area, the circle or the square? (Take $\pi=22 / 7$)

Solution:-

From the question, it is given that
Length of wire that Shazli took $=44 \mathrm{~cm}$
Then,
If the wire is bent into a circle,
We know that the circumference of the circle $=2 \pi r$
$44=2 \times(22 / 7) \times r$
$44=44 / 7 \times r$
$(44 \times 7) / 44=r$
$r=7 \mathrm{~cm}$
Area of the circle $=\pi r^{2}$
$=22 / 7 \times 7^{2}$
$=22 / 7 \times 7 \times 7$
$=22 \times 7$
$=154 \mathrm{~cm}^{2}$
Now,
If the wire is bent into a square,

The length of each side of the square $=44 / 4$
$=11 \mathrm{~cm}$
Area of the square $=$ Length of the side of square ${ }^{2}$
$=11^{2}$
$=121 \mathrm{~cm}^{2}$
By comparing the two areas of the square and circle,
Clearly, the circle encloses more area.
10. From a circular card sheet of radius 14 cm , two circles of radius 3.5 cm and a rectangle of length 3 cm and breadth 1 cm are removed. (As shown in the adjoining figure.) Find the area of the remaining sheet. (Take $\pi=22 / 7$)

Solution:-

From the question, it is given that
Radius of the circular card sheet $=14 \mathrm{~cm}$
Radius of the two small circles $=3.5 \mathrm{~cm}$
Length of the rectangle $=3 \mathrm{~cm}$
Breadth of the rectangle $=1 \mathrm{~cm}$
First, we have to find out the area of the circular card sheet, two circles and the rectangle to find out the remaining area.

Now,
Area of the circular card sheet $=\pi r^{2}$
$=22 / 7 \times 14^{2}$
$=22 / 7 \times 14 \times 14$
$=22 \times 2 \times 14$
$=616 \mathrm{~cm}^{2}$
Area of the 2 small circles $=2 \times \pi r^{2}$
$=2 \times\left(22 / 7 \times 3.5^{2}\right)$
$=2 \times(22 / 7 \times 3.5 \times 3.5)$
$=2 \times((22 / 7) \times 12.25)$
$=2 \times 38.5$
$=77 \mathrm{~cm}^{2}$
Area of the rectangle $=$ Length \times Breadth
$=3 \times 1$
$=3 \mathrm{~cm}^{2}$
Now,
The area of the remaining part = Card sheet area - (Area of two small circles + Rectangle area)
$=616-(77+3)$
$=616-80$
$=536 \mathrm{~cm}^{2}$
11. A circle of radius 2 cm is cut out from a square piece of an aluminium sheet of side

6 cm . What is the area of the leftover aluminium sheet? (Take $\boldsymbol{\pi}=3.14$)

Solution:-

From the question, it is given that
Radius of circle $=2 \mathrm{~cm}$
Square sheet side $=6 \mathrm{~cm}$
First, we have to find out the area of the square aluminium sheet and circle to find out the remaining area.
Now,
Area of the square $=$ side 2
$=6^{2}$
$=36 \mathrm{~cm}^{2}$
Area of the circle $=\pi r^{2}$
$=3.14 \times 2^{2}$
$=3.14 \times 2 \times 2$
$=3.14 \times 4$
$=12.56 \mathrm{~cm}^{2}$
Now,
The area of the remaining part = Area of the aluminium square sheet - The area of the circle
$=36-12.56$
$=23.44 \mathrm{~cm}^{2}$
12. The circumference of a circle is 31.4 cm . Find the radius and the area of the circle. (Take $\pi=3.14$)

Solution:-
From the question, it is given that
Circumference of a circle $=31.4 \mathrm{~cm}$
We know that,
Circumference of a circle $=2 \pi r$
$31.4=2 \times 3.14 \times r$
$31.4=6.28 \times r$
$31.4 / 6.28=r$
$r=5 \mathrm{~cm}$
Then,
Area of the circle $=\pi r^{2}$
$=3.14 \times 5^{2}$
$=3.14 \times 25$
$=78.5 \mathrm{~cm}$
13. A circular flower bed is surrounded by a path 4 m wide. The diameter of the flower bed is 66 m . What is the area of this path? $(\pi=3.14)$

Solution:-

From the question, it is given that
Diameter of the flower bed $=66 \mathrm{~m}$
Then,
Radius of the flower bed $=\mathrm{d} / 2$
= 66/2
$=33 \mathrm{~m}$
Area of flower bed $=\pi r^{2}$
$=3.14 \times 33^{2}$
$=3.14 \times 1089$
$=3419.46 \mathrm{~m}$
Now, we have to find the area of the flower bed and path together.
So, the radius of the flower bed and path together $=33+4=37 \mathrm{~m}$
Area of the flower bed and path together $=\pi r^{2}$
$=3.14 \times 37^{2}$
$=3.14 \times 1369$
$=4298.66 \mathrm{~m}$

Finally,

Area of the path = Area of the flower bed and path together - Area of the flower bed
$=4298.66-3419.46$
$=879.20 \mathrm{~m}^{2}$
14. A circular flower garden has an area of $314 \mathrm{~m}^{2}$. A sprinkler at the centre of the garden can cover an area that has a radius of 12 m . Will the sprinkler water the entire garden? (Take $\boldsymbol{\pi}=3.14$)

Solution:-

From the question, it is given that
Area of the circular flower garden $=314 \mathrm{~m}^{2}$
The sprinkler at the centre of the garden can cover an area that has a radius $=12 \mathrm{~m}$
Area of the circular flower garden $=\pi r^{2}$
$314=3.14 \times r^{2}$
$314 / 3.14=r^{2}$
$r^{2}=100$
$r=\sqrt{ } 100$
$r=10 \mathrm{~m}$
\therefore Radius of the circular flower garden is 10 m .
The sprinkler can cover an area of a radius of 12 m .
Hence, the sprinkler will water the whole garden.
15. Find the circumference of the inner and the outer circles, shown in the adjoining figure? (Take π $=3.14$)

Solution:-

From the figure,
Radius of inner circle $=$ outer circle radius -10
$=19-10$
$=9 \mathrm{~m}$
Circumference of the inner circle $=2 \pi r$
$=2 \times 3.14 \times 9$
$=56.52 \mathrm{~m}$
Then,
Radius of outer circle $=19 \mathrm{~m}$
Circumference of the outer circle $=2 \pi r$
$=2 \times 3.14 \times 19$
$=119.32 \mathrm{~m}$
16. How many times a wheel of radius 28 cm must rotate to go 352 m ? (Take $\boldsymbol{\pi}=22 / 7$)

Solution:-

From the question, it is given that
Radius of the wheel $=28 \mathrm{~cm}$
Circumference of the wheel $=2 \pi r$
$=2 \times 22 / 7 \times 28$
$=2 \times 22 \times 4$
$=176 \mathrm{~cm}$
Now, we have to find the number of rotations of the wheel.
$=$ Total distance to be covered/Circumference of the wheel
$=352 \mathrm{~m} / 176 \mathrm{~cm}$
$=35200 \mathrm{~cm} / 176 \mathrm{~cm}$
$=200$
17. The minute hand of a circular clock is 15 cm long. How far does the tip of the minute hand move in 1 hour? (Take $\pi=3.14$)

Solution:-

From the question, it is given that
Length of the minute hand of the circular clock $=15 \mathrm{~cm}$
Then,

Distance travelled by the tip of minute hand in 1 hour $=$ Circumference of the clock
$=2 \pi r$
$=2 \times 3.14 \times 15$
$=94.2 \mathrm{~cm}$

