PAGE: 226

EXERCISE 11.4

1. A garden is 90 m long and 75 m broad. A path 5 m wide is to be built outside and around it. Find the area of the path. Also, find the area of the garden in hectares.

Solution:-

From the question, it is given that

Length of the garden (L) = 90 m

Breadth of the garden (B) = 75 m

Then,

Area of the garden = Length × Breadth

 $= 90 \times 75$

 $= 6750 \text{ m}^2$

From the figure,

The new length and breadth of the garden when the path is included are 100 m and 85 m, respectively.

New area of the garden = 100×85

= 8500 m²

The area of path = New area of the garden including path – Area of garden

= 8500 - 6750

 $= 1750 \text{ m}^2$

For 1 hectare = 10000 m²

Hence, the area of the garden in hectares = 6750/10000

= 0.675 hectare

2. A 3 m wide path runs outside and around a rectangular park of length 125 m and breadth 65 m. Find the area of the path.

Solution:-

From the question, it is given that

Length of the park (L) = 125 m

Breadth of the park (B) = 65 m

Then,

Area of the park = Length × Breadth

- $= 125 \times 65$
- $= 8125 \text{ m}^2$

From the figure,

The new length and breadth of the park when the path is included are 131 m and 71 m, respectively.

New area of the park = 131×71

 $= 9301 \text{ m}^2$

The area of path = New area of the park including path – Area of the park

- = 9301 8125
- = 1176 m²
- 3. A picture is painted on a cardboard 8 cm long and 5 cm wide, such that there is a margin of 1.5 cm along each of its sides. Find the total area of the margin.

Solution:-

From the question, it is given that

Length of the cardboard (L) = 8 cm

Breadth of the cardboard (B) = 5 cm

(i)

From the question, it is given that

Length of the room (L) = 5.5 m

Breadth of the room (B) = 4 m

Then,

Area of the room = Length × Breadth

 $= 5.5 \times 4$

 $= 22 \text{ m}^2$

From the figure,

The new length and breadth of the room when the verandah is included are 10 m and 8.5 m, respectively.

The new area of the room when the verandah is included = 10×8.5

 $= 85 \text{ m}^2$

The area of verandah = Area of the room when verandah is included – Area of the room

= 85 - 22

 $= 63 \text{ m}^2$

(ii)

Given, the cost of cementing the floor of the verandah at the rate of ₹ 200 per m²

Then the cost of cementing the 63 m² area of floor of the verandah = 200×63

- **=** ₹ 12600
- 5. A path 1 m wide is built along the border and inside a square garden of side 30 m. Find:
- (i) the area of the path.
- (ii) the cost of planting grass in the remaining portion of the garden at the rate of ₹ 40 per m².

Solution:-

(i)

From the question, it is given that

Side of the square garden (s) = 30 m

Solution:-

Then,
Area of the square garden = S ²
$=30^{2}$
$= 30 \times 30$
$= 900 \text{ m}^2$
From the figure,
The new side of the square garden, when the path is not included, is 28 m.
The new area of the room when the verandah is included = 28 ²
= 28 × 28
$= 784 \text{ m}^2$
The area of the path = Area of the square garden when the path is included – Area of the square garden when the path is not included
=900-784
= 116 m ²
(ii)
Given, the cost of planting the grass in the remaining portion of the garden at the rate of
= ₹ 40 per m²
Then the cost of planting the grass in 784 m^2 area of the garden = 784 \times 40
= ₹ 31360
6. Two crossroads, each of width 10 m, cut at right angles through the centre of a rectangular park of length 700 m and breadth 300 m and parallel to its sides. Find the area of the roads. Also, find the area of the park excluding the crossroads. Give the answer in hectares.

From the question, it is given that

Length of the park (L) = 700 m

Breadth of the park (B) = 300 m

Then,

Area of the park = Length × Breadth

 $= 700 \times 300$

= 210000 m²

Let us assume that ABCD is the one crossroad and EFGH is another crossroad in the park.

The length of ABCD cross road = 700 m

The length of EFGH cross road = 300 m

Both crossroads have the same width = 10 m

Then,

Area of the ABCD cross road = Length × Breadth

(i)

From the question, it is given that

Length of the field (L) = 90 m

Breadth of the field (B) = 60 m

Then,

Area of the field = Length × Breadth

 $= 90 \times 60$

 $= 5400 \text{ m}^2$

Let us assume that ABCD is the one crossroad and EFGH is another crossroad in the park.

The length of ABCD cross road = 90 m

The length of EFGH cross road = 60 m

Both crossroads have the same width = 3 m

Then,

Solution:-

From the question, it is given that

Radius of a circular pipe = 4 cm

Side of a square = 4 cm

Then,

Perimeter of the circular pipe = $2\pi r$

 $= 2 \times 3.14 \times 4$

= 25.12 cm

Perimeter of the square = $4 \times \text{Side}$ of the square

 $=4\times4$

= 16 cm

So, the length of cord left with Pragya = Perimeter of the circular pipe – Perimeter of the square

= 25.12 - 16

= 9.12 cm

Yes, 9.12 cm cord is left.

- 9. The adjoining figure represents a rectangular lawn with a circular flower bed in the middle. Find:
- (i) the area of the whole land. (ii) the area of the flower bed.
- (iii) the area of the lawn, excluding the area of the flower bed.
- (iv) the circumference of the flower bed.

Solution:-

(i)

From the figure,

Length of rectangular lawn = 10 m

Breadth of rectangular lawn = 5 m

Area of the rectangular lawn = Length × Breadth

 $= 10 \times 5$

 $= 50 \text{ m}^2$

(ii)

From the figure,

Radius of the flower bed = 2 m

Area of the flower bed = πr^2

 $= 3.14 \times 2^{2}$

 $= 3.14 \times 4$

= 12.56 m²

(iii)

The area of the lawn, excluding the area of the flower bed = Area of the rectangular lawn –

Area of the flower bed

= 50 - 12.56

 $= 37.44 \text{ m}^2$

(iv)

The circumference of the flower bed = $2\pi r$

$$= 2 \times 3.14 \times 2$$

= 12.56 m

10. In the following figures, find the area of the shaded portions.

(i)

Solution:-

To find the area of EFDC, first, we have to find the area of \triangle AEF, \triangle EBC and rectangle ABCD.

Area of $\triangle AEF = \frac{1}{2} \times Base \times Height$

$$= \frac{1}{2} \times 6 \times 10$$

$$= 1 \times 3 \times 10$$

$$= 30 \text{ cm}^2$$

Area of \triangle EBC = $\frac{1}{2}$ × Base × Height

$$= \frac{1}{2} \times 8 \times 10$$

$$= 1 \times 4 \times 10$$

$$= 40 \text{ cm}^2$$

Area of rectangle ABCD = Length × Breadth

$$= 18 \times 10$$

Then,

Area of EFDC = ABCD area – $(\Delta AEF + \Delta EBC)$

$$= 180 - (30 + 40)$$

- = 180 70
- $= 110 \text{ cm}^2$

(ii)

Solution:-

To find the area of Δ QTU, first, we have to find the area of Δ STU, Δ TPQ, Δ QRU and square PQRS.

Area of Δ STU = $\frac{1}{2}$ × Base × Height

$$= \frac{1}{2} \times 10 \times 10$$

$$= 1 \times 5 \times 10$$

 $= 50 \text{ cm}^2$

Area of ΔTPQ = ½ × Base × Height

$$= \frac{1}{2} \times 10 \times 20$$

$$= 1 \times 5 \times 20$$

 $= 100 \text{ cm}^2$

Area of $\triangle QRU = \frac{1}{2} \times Base \times Height$

$$= \frac{1}{2} \times 10 \times 20$$

$$= 1 \times 5 \times 20$$

$$= 100 \text{ cm}^2$$

Area of square PQRS = Side²

$$= 20 \times 20$$

$$= 400 \text{ cm}^2$$

Then,

Area of $\triangle QTU = PQRS$ area $-(\triangle STU + \triangle TPQ + \triangle QRU)$

$$= 400 - (50 + 100 + 100)$$

$$=400-250$$

11. Find the area of the quadrilateral ABCD.

Here,
$$AC = 22 \text{ cm}$$
, $BM = 3 \text{ cm}$,

DN = 3 cm, and BM
$$\perp$$
 AC, DN \perp AC

Solution:-

From the question, it is given that

NCERT Solutions for Class 7 Maths Chapter 11 -Perimeter and Area

AC = 22 cm, BM = 3 cm DN = 3 cm and BM \perp AC, DN \perp AC

To find the area of quadrilateral ABCD, first, we have to find the area of \triangle ABC, and \triangle ADC Area of \triangle ABC = $\frac{1}{2}$ × Base × Height

- $= \frac{1}{2} \times 22 \times 3$
- $= 1 \times 11 \times 3$
- = 33 cm²

Area of ΔADC = ½ × Base × Height

- $= \frac{1}{2} \times 22 \times 3$
- $= 1 \times 11 \times 3$
- = 33 cm²

Then,

Area of quadrilateral ABCD = Area of \triangle ABC + Area of \triangle ADC

- = 33 + 33
- = 66 cm²