EXERCISE 11.4

1. A garden is 90 m long and 75 m broad. A path 5 m wide is to be built outside and around it. Find the area of the path. Also, find the area of the garden in hectares.

Solution:-

From the question, it is given that
Length of the garden $(\mathrm{L})=90 \mathrm{~m}$
Breadth of the garden $(B)=75 \mathrm{~m}$
Then,
Area of the garden $=$ Length \times Breadth
$=90 \times 75$
$=6750 \mathrm{~m}^{2}$

From the figure,
The new length and breadth of the garden when the path is included are 100 m and 85 m , respectively.
New area of the garden $=100 \times 85$
$=8500 \mathrm{~m}^{2}$
The area of path = New area of the garden including path - Area of garden
$=8500-6750$
$=1750 \mathrm{~m}^{2}$
For 1 hectare $=10000 \mathrm{~m}^{2}$
Hence, the area of the garden in hectares $=6750 / 10000$
$=0.675$ hectare
2. A 3 m wide path runs outside and around a rectangular park of length 125 m and breadth 65 m . Find the area of the path.

Solution:-

131 m

From the question, it is given that
Length of the park $(\mathrm{L})=125 \mathrm{~m}$
Breadth of the park $(B)=65 \mathrm{~m}$
Then,
Area of the park $=$ Length \times Breadth
$=125 \times 65$
$=8125 \mathrm{~m}^{2}$
From the figure,
The new length and breadth of the park when the path is included are 131 m and 71 m , respectively.
New area of the park $=131 \times 71$
$=9301 \mathrm{~m}^{2}$
The area of path = New area of the park including path - Area of the park
= 9301 - 8125
$=1176 \mathrm{~m}^{2}$
3. A picture is painted on a cardboard 8 cm long and 5 cm wide, such that there is a margin of 1.5 cm along each of its sides. Find the total area of the margin.

Solution:-

From the question, it is given that
Length of the cardboard $(\mathrm{L})=8 \mathrm{~cm}$
Breadth of the cardboard $(B)=5 \mathrm{~cm}$
Then,
Area of the cardboard $=$ Length \times Breadth
$=8 \times 5$
$=40 \mathrm{~cm}^{2}$
From the figure,
The new length and breadth of the cardboard when the margin is not included are 5 cm and 2 cm , respectively.

New area of the cardboard $=5 \times 2$
$=10 \mathrm{~cm}^{2}$
The area of margin = Area of the cardboard when the margin is included - Area of the cardboard when the margin is not included
$=40-10$
$=30 \mathrm{~cm}^{2}$
4. A verandah of width 2.25 m is constructed all along outside a room which is 5.5 m long and 4 m wide. Find:
(i) the area of the verandah.
(ii) the cost of cementing the floor of the verandah at the rate of ₹ 200 per \mathbf{m}^{2}.

Solution:-

(i)

From the question, it is given that
Length of the room $(\mathrm{L})=5.5 \mathrm{~m}$
Breadth of the room $(B)=4 \mathrm{~m}$
Then,
Area of the room $=$ Length \times Breadth
$=5.5 \times 4$
$=22 \mathrm{~m}^{2}$
From the figure,
The new length and breadth of the room when the verandah is included are 10 m and 8.5 m , respectively.
The new area of the room when the verandah is included $=10 \times 8.5$
$=85 \mathrm{~m}^{2}$
The area of verandah = Area of the room when verandah is included - Area of the room
$=85-22$
$=63 \mathrm{~m}^{2}$
(ii)

Given, the cost of cementing the floor of the verandah at the rate of ₹ 200 per m²
Then the cost of cementing the $63 \mathrm{~m}^{2}$ area of floor of the verandah $=200 \times 63$
= ₹ 12600
5. A path 1 m wide is built along the border and inside a square garden of side 30 m . Find:
(i) the area of the path.
(ii) the cost of planting grass in the remaining portion of the garden at the rate of $₹ 40$ per m^{2}.

Solution:-

30 m

(i)

From the question, it is given that
Side of the square garden $(\mathrm{s})=30 \mathrm{~m}$

Then,
Area of the square garden $=S^{2}$
$=30^{2}$
$=30 \times 30$
$=900 \mathrm{~m}^{2}$
From the figure,
The new side of the square garden, when the path is not included, is 28 m .
The new area of the room when the verandah is included $=28^{2}$
$=28 \times 28$
$=784 \mathrm{~m}^{2}$
The area of the path = Area of the square garden when the path is included - Area of the square garden when the path is not included
$=900-784$
$=116 \mathrm{~m}^{2}$
(ii)

Given, the cost of planting the grass in the remaining portion of the garden at the rate of
= ₹ 40 per m^{2}
Then the cost of planting the grass in $784 \mathrm{~m}^{2}$ area of the garden $=784 \times 40$
= ₹ 31360
6. Two crossroads, each of width 10 m , cut at right angles through the centre of a rectangular park of length 700 m and breadth 300 m and parallel to its sides. Find the area of the roads. Also, find the area of the park excluding the crossroads. Give the answer in hectares.

Solution:-

From the question, it is given that
Length of the park $(\mathrm{L})=700 \mathrm{~m}$
Breadth of the park $(B)=300 \mathrm{~m}$
Then,
Area of the park $=$ Length \times Breadth
$=700 \times 300$
$=210000 \mathrm{~m}^{2}$
Let us assume that $A B C D$ is the one crossroad and EFGH is another crossroad in the park.
The length of $A B C D$ cross road $=700 \mathrm{~m}$
The length of EFGH cross road $=300 \mathrm{~m}$
Both crossroads have the same width $=10 \mathrm{~m}$
Then,
Area of the $A B C D$ cross road $=$ Length \times Breadth
$=700 \times 10$
$=7000 \mathrm{~m}^{2}$
Area of the EFGH cross road $=$ Length \times Breadth
$=300 \times 10$
$=3000 \mathrm{~m}^{2}$
Area of the IJKL at centre $=$ Length \times Breadth
$=10 \times 10$
$=100 \mathrm{~m}^{2}$
Area of the roads $=$ Area of ABCD + Area of EFGH - Area of IJKL
$=7000+3000-100$
$=10000-100$
$=9900 \mathrm{~m}^{2}$
We know that for 1 hectare $=10000 \mathrm{~m}^{2}$
Hence, the area of roads in hectares $=9900 / 10000$
$=0.99$ hectare
Finally, the area of the park excluding roads = Area of the park - Area of the roads
$=210000-9900$
$=200100 \mathrm{~m}^{2}$
$=200100 / 10000$
$=20.01$ hectare
7. Through a rectangular field of length 90 m and breadth 60 m , two roads are constructed which are parallel to the sides and cut each other at right angles through the centre of the fields. If the width of each road is 3 m , find
(i) the area covered by the roads.
(ii) the cost of constructing the roads at the rate of $₹ 110$ per m^{2}.

Solution:-

(i)

From the question, it is given that
Length of the field $(\mathrm{L})=90 \mathrm{~m}$
Breadth of the field $(B)=60 \mathrm{~m}$
Then,
Area of the field $=$ Length \times Breadth
$=90 \times 60$
$=5400 \mathrm{~m}^{2}$
Let us assume that ABCD is the one crossroad and EFGH is another crossroad in the park.
The length of $A B C D$ cross road $=90 \mathrm{~m}$
The length of EFGH cross road $=60 \mathrm{~m}$
Both crossroads have the same width $=3 \mathrm{~m}$
Then,

Area of the $A B C D$ cross road $=$ Length \times Breadth
$=90 \times 3$
$=270 \mathrm{~m}^{2}$
Area of the EFGH cross road $=$ length \times breadth
$=60 \times 3$
$=180 \mathrm{~m}^{2}$
Area of the IJKL at centre $=$ Length \times Breadth
$=3 \times 3$
$=9 \mathrm{~m}^{2}$
Area of the roads $=$ Area of ABCD + Area of EFGH - Area of IJKL
$=270+180-9$
$=450-9$
$=441 \mathrm{~m}^{2}$
(ii)

Given, the cost of constructing the roads at the rate of ₹ 110 per m².
Then the cost of constructing the $441 \mathrm{~m}^{2}$ roads $=441 \times 110$
= ₹ 48510
8. Pragya wrapped a cord around a circular pipe of radius 4 cm (adjoining figure) and cut off the length required of the cord. Then she wrapped it around a square box of side 4 cm (also shown). Did she have any cords left? $(\pi=3.14)$

Solution:-

From the question, it is given that
Radius of a circular pipe $=4 \mathrm{~cm}$
Side of a square $=4 \mathrm{~cm}$
Then,
Perimeter of the circular pipe $=2 \pi r$
$=2 \times 3.14 \times 4$
$=25.12 \mathrm{~cm}$
Perimeter of the square $=4 \times$ Side of the square
$=4 \times 4$
$=16 \mathrm{~cm}$
So, the length of cord left with Pragya $=$ Perimeter of the circular pipe - Perimeter of the square
$=25.12-16$
$=9.12 \mathrm{~cm}$
Yes, 9.12 cm cord is left.
9. The adjoining figure represents a rectangular lawn with a circular flower bed in the middle. Find:
(i) the area of the whole land. (ii) the area of the flower bed.
(iii) the area of the lawn, excluding the area of the flower bed.
(iv) the circumference of the flower bed.

Solution:-

(i)

From the figure,
Length of rectangular lawn $=10 \mathrm{~m}$
Breadth of rectangular lawn $=5 \mathrm{~m}$
Area of the rectangular lawn $=$ Length \times Breadth
$=10 \times 5$
$=50 \mathrm{~m}^{2}$
(ii)

From the figure,
Radius of the flower bed $=2 \mathrm{~m}$
Area of the flower bed $=\pi r^{2}$
$=3.14 \times 2^{2}$
$=3.14 \times 4$
$=12.56 \mathrm{~m}^{2}$
(iii)

The area of the lawn, excluding the area of the flower bed = Area of the rectangular lawn Area of the flower bed
$=50-12.56$
$=37.44 \mathrm{~m}^{2}$
(iv)

The circumference of the flower bed $=2 \pi r$
$=2 \times 3.14 \times 2$
$=12.56 \mathrm{~m}$
10. In the following figures, find the area of the shaded portions.
(i)

Solution:-

To find the area of EFDC, first, we have to find the area of $\triangle A E F, \triangle E B C$ and rectangle $A B C D$.
Area of $\triangle \mathrm{AEF}=1 / 2 \times$ Base \times Height
$=1 / 2 \times 6 \times 10$
$=1 \times 3 \times 10$
$=30 \mathrm{~cm}^{2}$
Area of $\triangle \mathrm{EBC}=1 / 2 \times$ Base \times Height
$=1 / 2 \times 8 \times 10$
$=1 \times 4 \times 10$
$=40 \mathrm{~cm}^{2}$
Area of rectangle $\mathrm{ABCD}=$ Length \times Breadth
$=18 \times 10$
$=180 \mathrm{~cm}^{2}$

Then,
Area of EFDC $=\mathrm{ABCD}$ area $-(\triangle \mathrm{AEF}+\triangle \mathrm{EBC})$
$=180-(30+40)$
$=180-70$
$=110 \mathrm{~cm}^{2}$
(ii)

Solution:-

To find the area of $\triangle Q T U$, first, we have to find the area of $\triangle S T U, \triangle T P Q, \triangle Q R U$ and square PQRS.
Area of Δ STU $=1 / 2 \times$ Base \times Height
$=1 / 2 \times 10 \times 10$
$=1 \times 5 \times 10$
$=50 \mathrm{~cm}^{2}$
Area of $\Delta \mathrm{TPQ}=1 / 2 \times$ Base \times Height
$=1 / 2 \times 10 \times 20$
$=1 \times 5 \times 20$
$=100 \mathrm{~cm}^{2}$
Area of $\triangle Q R U=1 / 2 \times$ Base \times Height
$=1 / 2 \times 10 \times 20$
$=1 \times 5 \times 20$
$=100 \mathrm{~cm}^{2}$
Area of square PQRS = Side ${ }^{2}$
$=20 \times 20$
$=400 \mathrm{~cm}^{2}$
Then,
Area of $\triangle Q T U=P Q R S$ area $-(\Delta S T U+\Delta T P Q+\triangle Q R U)$
$=400-(50+100+100)$
$=400-250$
$=150 \mathrm{~cm}^{2}$
11. Find the area of the quadrilateral $A B C D$.

Here, $\mathrm{AC}=22 \mathrm{~cm}, \mathrm{BM}=3 \mathrm{~cm}$,
$\mathrm{DN}=3 \mathrm{~cm}$, and $\mathrm{BM} \perp \mathrm{AC}, \mathrm{DN} \perp \mathrm{AC}$

Solution:-
From the question, it is given that
$\mathrm{AC}=22 \mathrm{~cm}, \mathrm{BM}=3 \mathrm{~cm} \mathrm{DN}=3 \mathrm{~cm}$ and $\mathrm{BM} \perp \mathrm{AC}, \mathrm{DN} \perp \mathrm{AC}$
To find the area of quadrilateral $A B C D$, first, we have to find the area of $\triangle A B C$, and $\triangle A D C$ Area of $\triangle A B C=$ $1 / 2 \times$ Base \times Height
$=1 / 2 \times 22 \times 3$
$=1 \times 11 \times 3$
$=33 \mathrm{~cm}^{2}$
Area of $\triangle A D C=1 / 2 \times$ Base \times Height
$=1 / 2 \times 22 \times 3$
$=1 \times 11 \times 3$
$=33 \mathrm{~cm}^{2}$
Then,
Area of quadrilateral $A B C D=$ Area of $\triangle A B C+$ Area of $\triangle A D C$
$=33+33$
$=66 \mathrm{~cm}^{2}$

