1. Get the algebraic expressions in the following cases using variables, constants and arithmetic operations.
(i) Subtraction of z from y.

Solution:-
$=Y-z$
(ii) One-half of the sum of numbers x and y .

Solution:-
$=1 / 2(x+y)$
$=(x+y) / 2$
(iii) The number \mathbf{z} multiplied by itself.

Solution:-
$=z \times z$
$=\mathrm{z}^{2}$
(iv) One-fourth of the product of numbers p and q .

Solution:-
$=1 / 4(p \times q)$
$=p q / 4$
(v) Numbers x and y, both squared and added.

Solution:-
$=x^{2}+y^{2}$
(vi) Number 5 added to three times the product of numbers m and n .

Solution:-
$=3 m n+5$
(vii) Product of numbers y and z subtracted from 10.

Solution:-
$=10-(\mathrm{y} \times \mathrm{z})$
$=10-y z$
(viii) Sum of numbers a and b subtracted from their product.

Solution:-
$=(a \times b)-(a+b)$
$=a b-(a+b)$
2. (i) Identify the terms and their factors in the following expressions.

Show the terms and factors by tree diagrams.
(a) $x-3$

Solution:-
Expression: $\mathrm{x}-3$
Terms: $\mathrm{x},-3$
Factors: $x ;-3$

(b) $1+x+x^{2}$

Solution:-

Expression: $1+\mathrm{x}+\mathrm{x}^{2}$
Terms: $1, \mathrm{x}, \mathrm{x}^{2}$
Factors: $1 ; x ; x, x$

Solution:-
Expression: y $-\mathrm{y}^{3}$
Terms: $y,-y^{3}$
Factors: $\mathrm{y} ;-\mathrm{y},-\mathrm{y},-\mathrm{y}$

(d) $5 x y^{2}+7 x^{2} y$

Solution:-
Expression: $5 x y^{2}+7 x^{2} y$
Terms: $5 x^{2}, 7 x^{2} y$
Factors: $5, \mathrm{x}, \mathrm{y}, \mathrm{y} ; 7, \mathrm{x}, \mathrm{x}, \mathrm{y}$

(e) $-a b+2 b^{2}-3 a^{2}$

Solution:-
Expression: $-\mathrm{ab}+2 \mathrm{~b}^{2}-3 \mathrm{a}^{2}$
Terms: -ab, $2 b^{2},-3 a^{2}$
Factors: $-\mathrm{a}, \mathrm{b} ; 2, \mathrm{~b}, \mathrm{~b} ;-3, \mathrm{a}, \mathrm{a}$

$$
-a b+2 b^{2}-3 a^{2}
$$

(ii) Identify terms and factors in the expressions given below.
(a) $-4 x+5$ (b) $-4 x+5 y(c) 5 y+3 y^{2}(d) x y+2 x^{2} y^{2}$
(e) $p q+q(f) 1.2 a b-2.4 b+3.6 a(g) 3 / 4 x+1 / 4$
(h) $0.1 p^{2}+0.2 q^{2}$

Solution:-

Expressions are defined as numbers, symbols and operators (such as.,$+- \times$ and \div) grouped together that show the value of something.

In algebra, a term is either a single number or variable or numbers and variables multiplied together. Terms are separated by + or - signs or sometimes by division.

Factors are defined as numbers we can multiply together to get another number.

SI.No.	Expression	Terms	Factors
(a)	$-4 x+5$	$-4 x$	$-4, x$
		5	5

		$0.2 q^{2}$	$0.2, \mathrm{q}, \mathrm{q}$

3. Identify the numerical coefficients of terms (other than constants) in the following expressions.
(i) $5-3 \mathrm{t}^{2}$ (ii) $1+\mathrm{t}+\mathrm{t}^{2}+\mathrm{t}^{3}$ (iii) $\mathrm{x}+2 \mathrm{xy}+3 \mathrm{y}$ (iv) $100 \mathrm{~m}+1000 \mathrm{n}$ (v) $-\mathrm{p}^{2} \mathrm{q}^{2}+7 \mathrm{pq}$ (vi) $1.2 \mathrm{a}+0.8 \mathrm{~b}$ (vii) 3.14 r^{2} (viii) 2 (l + b)
(ix) $0.1 \mathrm{y}+0.01 \mathrm{y}^{2}$

Solution:-

Expressions are defined as numbers, symbols and operators (such as.,$+- \times$ and \div) grouped together that show the value of something.

In algebra, a term is either a single number or variable or numbers and variables multiplied together. Terms are separated by + or - signs or sometimes by division.

A coefficient is a number used to multiply a variable ($2 x$ means 2 times x, so 2 is a coefficient). Variables on their own (without a number next to them) actually have a coefficient of 1 (x is really 1 x).

SI.No.	Expression	Terms	Coefficients
(i)	$5-3 \mathrm{t}^{2}$	$-3 t^{2}$	-3
(ii)	$1+t+t^{2}+t^{3}$	$\begin{aligned} & \mathrm{t} \\ & \mathrm{t}^{2} \\ & \mathrm{t}^{3} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
(iii)	$x+2 x y+3 y$	$\begin{aligned} & x \\ & 2 x y \\ & 3 y \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$
(iv)	$100 m+1000 n$	$\begin{aligned} & \text { 100m } \\ & \text { 1000n } \end{aligned}$	$\begin{aligned} & 100 \\ & 1000 \end{aligned}$
(v)	$-p^{2} q^{2}+7 p q$	$\begin{aligned} & -p^{2} q^{2} \\ & 7 p q \end{aligned}$	$\begin{aligned} & -1 \\ & 7 \end{aligned}$
(vi)	$1.2 \mathrm{a}+0.8 \mathrm{~b}$	$\begin{aligned} & 1.2 a \\ & 0.8 \mathrm{~b} \end{aligned}$	$\begin{aligned} & 1.2 \\ & 0.8 \end{aligned}$
(vii)	$3.14{ }^{\text {r }}$	$3.14{ }^{2}$	3.14

(viii)	$2(\mathrm{l}+\mathrm{b})$	$2 l$ 2 b	2 2
(ix)	$0.1 \mathrm{y}+0.01 \mathrm{y}^{2}$	0.1 y $0.01 \mathrm{y}^{2}$	0.1 0.01

4. (a) Identify terms which contain x and give the coefficient of x.
(i) $y^{2} x+y$ (ii) $13 y^{2}-8 y x$ (iii) $x+y+2$
(iv) $\mathbf{5}+\mathrm{z}+\mathrm{zx}$ (v) $1+\mathrm{x}+\mathrm{xy}$ (vi) $12 \mathrm{xy}^{2}+25$
(vii) $7 x+x y^{2}$

Solution:-

SI.No.	Expression	Terms	Coefficient of \mathbf{x}
(i)	$y^{2} x+y$	$y^{2} x$	y^{2}
(ii)	$13 y^{2}-8 y x$	$-8 y x$	$-8 y$
(iii)	$x+y+2$	x	1
(iv)	$5+z+z x$	x	1
(v)	$1+x+x y$	$12 x y^{2}+25$	$7 x+x y^{2}$
vi)		$12 x y^{2}$	$12 y^{2}$
(vii)		$7 x$ $x y^{2}$	7

(b) Identify terms which contain y^{2} and give the coefficient of y^{2}.
(i) $8-x^{2}$ (ii) $5 y^{2}+7 x$ (iii) $2 x^{2} y-15 x y^{2}+7 y^{2}$

Solution:-

SI.No.	Expression	Terms	Coefficient of y^{2}

(i)	$8-x y^{2}$	$-x y^{2}$	$-x$
(ii)	$5 y^{2}+7 x$	$5 y^{2}$	5
(iii)	$2 x^{2} y-15 x y^{2}+7 y^{2}$	$-15 x y^{2}$	$-15 x$
$7 y^{2}$	7		

5. Classify into monomials, binomials and trinomials.
(i) $4 y-7 z$

Solution:-

Binomial.
An expression which contains two unlike terms is called a binomial.
(ii) y^{2}

Solution:-

Monomial.
An expression with only one term is called a monomial.
(iii) $x+y-x y$

Solution:-

Trinomial.
An expression which contains three terms is called a trinomial.
(iv) 100

Solution:-
Monomial.
An expression with only one term is called a monomial.
(v) $a b-a-b$

Solution:-

Trinomial.
An expression which contains three terms is called a trinomial.
(vi) $5-3 \mathrm{t}$

Solution:-

Binomial.
An expression which contains two unlike terms is called a binomial.
(vii) $4 p^{2} q-4 p q^{2}$

Solution:-

Binomial.
An expression which contains two unlike terms is called a binomial.
(viii) 7 mn

Solution:-

Monomial.
An expression with only one term is called a monomial.
(ix) $z^{2}-3 z+8$

Solution:-

Trinomial.
An expression which contains three terms is called a trinomial.
(x) $a^{2}+b^{2}$

Solution:-

Binomial.
An expression which contains two unlike terms is called a binomial.
(xi) $z^{2}+z$

Solution:-
Binomial.
An expression which contains two unlike terms is called a binomial.
(xii) $1+x+x^{2}$

Solution:-

Trinomial.
An expression which contains three terms is called a trinomial.
6. State whether a given pair of terms is of like or unlike terms.
(i) 1, 100

Solution:-
Like term.
When terms have the same algebraic factors, they are like terms.
(ii) $-7 x,(5 / 2) x$

Solution:-

Like term.
When terms have the same algebraic factors, they are like terms.
(iii) - 29x, - 29y

Solution:-
Unlike terms.
The terms have different algebraic factors, they are unlike terms.
(iv) $14 \mathrm{xy}, 42 \mathrm{yx}$

Solution:-

Like term.
When terms have the same algebraic factors, they are like terms.
(v) $4 m^{2} p, 4 m^{2}$

Solution:-

Unlike terms.
The terms have different algebraic factors, they are unlike terms.
(vi) $12 x z, 12 x^{2} z^{2}$

Solution:-
Unlike terms.
The terms have different algebraic factors, they are unlike terms.
7. Identify like terms in the following.
(a) $-x^{2},-4 y x^{2}, 8 x^{2}, 2 x y^{2}, 7 y,-11 x^{2},-100 x,-11 y x, 20 x^{2} y,-6 x^{2}, y, 2 x y, 3 x$

Solution:-

When terms have the same algebraic factors, they are like terms.
They are,
$-x y^{2}, 2 x y^{2}$
$-4 y x^{2}, 20 x^{2} y$
$8 x^{2},-11 x^{2},-6 x^{2}$
$7 \mathrm{y}, \mathrm{y}$

- 100x, 3x
- 11yx, 2xy
(b) 10pq, 7p, 8q, - $p^{2} q^{2},-7 q p,-100 q,-23,12 q^{2} p^{2},-5 p^{2}, 41,2405 p, 78 q p$,
$13 p^{2} q, q^{2}, 701 p^{2}$

Solution:-

When terms have the same algebraic factors, they are like terms.
They are,
10pq, - 7qp, 78qp
7p, 2405p
8q, - 100q
$-p^{2} q^{2}, 12 q^{2} p^{2}$
$-23,41$
$-5 p^{2}, 701 p^{2}$
$13 p^{2} q, q^{2}$

