EXERCISE 12.2

1. Simplify combining like terms.
(i) $21 \mathrm{~b}-32+7 \mathrm{~b}-20 \mathrm{~b}$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then,
$=(21 \mathrm{~b}+7 \mathrm{~b}-20 \mathrm{~b})-32$
$=\mathrm{b}(21+7-20)-32$
$=\mathrm{b}(28-20)-32$
$=b(8)-32$
$=8 \mathrm{~b}-32$
(ii) $-z^{2}+13 z^{2}-5 z+7 z^{3}-15 z$

Solution:-
When terms have the same algebraic factors, they are like terms.
Then,
$=7 z^{3}+\left(-z^{2}+13 z^{2}\right)+(-5 z-15 z)$
$=7 z^{3}+z^{2}(-1+13)+z(-5-15)$
$=7 z^{3}+z^{2}(12)+z(-20)$
$=7 z^{3}+12 z^{2}-20 z$
(iii) $p-(p-q)-q-(q-p)$

Solution:-
When terms have the same algebraic factors, they are like terms.
Then,
$=p-p+q-q-q+p$
$=p-q$
(iv) $3 a-2 b-a b-(a-b+a b)+3 a b+b-a$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then,
$=3 a-2 b-a b-a+b-a b+3 a b+b-a$
$=3 a-a-a-2 b+b+b-a b-a b+3 a b$
$=a(1-1-1)+b(-2+1+1)+a b(-1-1+3)$
$=a(1-2)+b(-2+2)+a b(-2+3)$
$=a(1)+b(0)+a b(1)$
$=a+a b$
(v) $5 x^{2} y-5 x^{2}+3 y x^{2}-3 y^{2}+x^{2}-y^{2}+8 x y^{2}-3 y^{2}$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then,
$=5 x^{2} y+3 y x^{2}-5 x^{2}+x^{2}-3 y^{2}-y^{2}-3 y^{2}$
$=x^{2} y(5+3)+x^{2}(-5+1)+y^{2}(-3-1-3)+8 x y^{2}$
$=x^{2} y(8)+x^{2}(-4)+y^{2}(-7)+8 x y^{2}$
$=8 x^{2} y-4 x^{2}-7 y^{2}+8 x y^{2}$
(vi) $\left(3 y^{2}+5 y-4\right)-\left(8 y-y^{2}-4\right)$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then,

$$
\begin{aligned}
& =3 y^{2}+5 y-4-8 y+y^{2}+4 \\
& =3 y^{2}+y^{2}+5 y-8 y-4+4 \\
& =y^{2}(3+1)+y(5-8)+(-4+4)
\end{aligned}
$$

$=y^{2}(4)+y(-3)+(0)$
$=4 y^{2}-3 y$
2. Add:
(i) $3 \mathrm{mn},-5 \mathrm{mn}, 8 \mathrm{mn},-4 \mathrm{mn}$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms.
$=3 m n+(-5 m n)+8 m n+(-4 m n)$
$=3 m n-5 m n+8 m n-4 m n$
$=m n(3-5+8-4)$
$=m n(11-9)$
$=m n(2)$
$=2 \mathrm{mn}$
(ii) $\mathrm{t}-8 \mathrm{tz}, 3 \mathrm{tz}-\mathrm{z}, \mathrm{z}-\mathrm{t}$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms.
$=\mathrm{t}-8 \mathrm{tz}+(3 \mathrm{tz}-\mathrm{z})+(\mathrm{z}-\mathrm{t})$
$=\mathrm{t}-8 \mathrm{tz}+3 \mathrm{tz}-\mathrm{z}+\mathrm{z}-\mathrm{t}$
$=\mathrm{t}-\mathrm{t}-8 \mathrm{tz}+3 \mathrm{tz}-\mathrm{z}+\mathrm{z}$
$=t(1-1)+t z(-8+3)+z(-1+1)$
$=t(0)+t z(-5)+z(0)$
$=-5 t z$
(iii) $-7 m n+5,12 m n+2,9 m n-8,-2 m n-3$

Solution:-

When terms have the same algebraic factors, they are like terms.

Then, we have to add the like terms.

$$
\begin{aligned}
& =-7 m n+5+12 m n+2+(9 m n-8)+(-2 m n-3) \\
& =-7 m n+5+12 m n+2+9 m n-8-2 m n-3 \\
& =-7 m n+12 m n+9 m n-2 m n+5+2-8-3 \\
& =m n(-7+12+9-2)+(5+2-8-3) \\
& =m n(-9+21)+(7-11) \\
& =m n(12)-4 \\
& =12 m n-4 \\
& \text { (iv) } a+b-3, b-a+3, a-b+3
\end{aligned}
$$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms.
$=a+b-3+(b-a+3)+(a-b+3)$
$=a+b-3+b-a+3+a-b+3$
$=a-a+a+b+b-b-3+3+3$
$=a(1-1+1)+b(1+1-1)+(-3+3+3)$
$=a(2-1)+b(2-1)+(-3+6)$
$=a(1)+b(1)+(3)$
$=\mathrm{a}+\mathrm{b}+3$
(v) $14 x+10 y-12 x y-13,18-7 x-10 y+8 x y, 4 x y$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms.

$$
\begin{aligned}
& =14 x+10 y-12 x y-13+(18-7 x-10 y+8 x y)+4 x y \\
& =14 x+10 y-12 x y-13+18-7 x-10 y+8 x y+4 x y \\
& =14 x-7 x+10 y-10 y-12 x y+8 x y+4 x y-13+18
\end{aligned}
$$

$=x(14-7)+y(10-10)+x y(-12+8+4)+(-13+18)$
$=x(7)+y(0)+x y(0)+(5)$
$=7 x+5$
(vi) $5 m-7 n, 3 n-4 m+2,2 m-3 m n-5$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms.
$=5 m-7 n+(3 n-4 m+2)+(2 m-3 m n-5)$
$=5 m-7 n+3 n-4 m+2+2 m-3 m n-5$
$=5 m-4 m+2 m-7 n+3 n-3 m n+2-5$
$=m(5-4+2)+n(-7+3)-3 m n+(2-5)$
$=m(3)+n(-4)-3 m n+(-3)$
$=3 m-4 n-3 m n-3$
(vii) $4 x^{2} y,-3 x y^{2},-5 x y^{2}, 5 x^{2} y$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms.
$=4 x^{2} y+\left(-3 x y^{2}\right)+\left(-5 x y^{2}\right)+5 x^{2} y$
$=4 x^{2} y+5 x^{2} y-3 x y^{2}-5 x y^{2}$
$=x^{2} y(4+5)+x y^{2}(-3-5)$
$=x^{2} y(9)+x y^{2}(-8)$
$=9 x^{2} y-8 x y^{2}$
(viii) $3 p^{2} q^{2}-4 p q+5,-10 p^{2} q^{2}, 15+9 p q+7 p^{2} q^{2}$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms.
$=3 p^{2} q^{2}-4 p q+5+\left(-10 p^{2} q^{2}\right)+15+9 p q+7 p^{2} q^{2}$
$=3 p^{2} q^{2}-10 p^{2} q^{2}+7 p^{2} q^{2}-4 p q+9 p q+5+15$
$=p^{2} q^{2}(3-10+7)+p q(-4+9)+(5+15)$
$=p^{2} q^{2}(0)+p q(5)+20$
$=5 p q+20$
(ix) $a b-4 a, 4 b-a b, 4 a-4 b$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms.

$$
\begin{aligned}
& =a b-4 a+(4 b-a b)+(4 a-4 b) \\
& =a b-4 a+4 b-a b+4 a-4 b \\
& =a b-a b-4 a+4 a+4 b-4 b \\
& =a b(1-1)+a(4-4)+b(4-4) \\
& =a b(0)+a(0)+b(0) \\
& =0
\end{aligned}
$$

(x) $x^{2}-y^{2}-1, y^{2}-1-x^{2}, 1-x^{2}-y^{2}$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms.

$$
\begin{aligned}
& =x^{2}-y^{2}-1+\left(y^{2}-1-x^{2}\right)+\left(1-x^{2}-y^{2}\right) \\
& =x^{2}-y^{2}-1+y^{2}-1-x^{2}+1-x^{2}-y^{2} \\
& =x^{2}-x^{2}-x^{2}-y^{2}+y^{2}-y^{2}-1-1+1 \\
& =x^{2}(1-1-1)+y^{2}(-1+1-1)+(-1-1+1) \\
& =x^{2}(1-2)+y^{2}(-2+1)+(-2+1) \\
& =x^{2}(-1)+y^{2}(-1)+(-1)
\end{aligned}
$$

$=-x^{2}-y^{2}-1$
3. Subtract:
(i) $-5 y^{2}$ from y^{2}

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms.
$=y^{2}-\left(-5 y^{2}\right)$
$=y^{2}+5 y^{2}$
$=6 y^{2}$
(ii) $6 x y$ from $-12 x y$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms.
$=-12 x y-6 x y$
$=-18 x y$
(iii) $(a-b)$ from $(a+b)$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms.
$=(a+b)-(a-b)$
$=a+b-a+b$
$=a-a+b+b$
$=a(1-1)+b(1+1)$
$=\mathrm{a}(0)+\mathrm{b}(2)$
$=2 \mathrm{~b}$
(iv) $a(b-5)$ from $b(5-a)$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms.
$=b(5-a)-a(b-5)$
$=5 b-a b-a b+5 a$
$=5 b+a b(-1-1)+5 a$
$=5 a+5 b-2 a b$
(v) $-m^{2}+5 m n$ from $4 m^{2}-3 m n+8$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms.
$=4 m^{2}-3 m n+8-\left(-m^{2}+5 m n\right)$
$=4 m^{2}-3 m n+8+m^{2}-5 m n$
$=4 m^{2}+m^{2}-3 m n-5 m n+8$
$=5 m^{2}-8 m n+8$
(vi) $-x^{2}+10 x-5$ from $5 x-10$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms.
$=5 x-10-\left(-x^{2}+10 x-5\right)$
$=5 x-10+x^{2}-10 x+5$
$=x^{2}+5 x-10 x-10+5$
$=x^{2}-5 x-5$
(vii) $5 a^{2}-7 a b+5 b^{2}$ from $3 a b-2 a^{2}-2 b^{2}$

Solution:-

When terms have the same algebraic factors, they are like terms.

Then, we have to subtract the like terms.
$=3 a b-2 a^{2}-2 b^{2}-\left(5 a^{2}-7 a b+5 b^{2}\right)$
$=3 a b-2 a^{2}-2 b^{2}-5 a^{2}+7 a b-5 b^{2}$
$=3 a b+7 a b-2 a^{2}-5 a^{2}-2 b^{2}-5 b^{2}$
$=10 a b-7 a^{2}-7 b^{2}$
(viii) $4 p q-5 q^{2}-3 p^{2}$ from $5 p^{2}+3 q^{2}-p q$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms.
$=5 p^{2}+3 q^{2}-p q-\left(4 p q-5 q^{2}-3 p^{2}\right)$
$=5 p^{2}+3 q^{2}-p q-4 p q+5 q^{2}+3 p^{2}$
$=5 p^{2}+3 p^{2}+3 q^{2}+5 q^{2}-p q-4 p q$
$=8 p^{2}+8 q^{2}-5 p q$
4. (a) What should be added to $x^{2}+x y+y^{2}$ to obtain $2 x^{2}+3 x y$?

Solution:-

Let us assume p be the required term.
Then,
$p+\left(x^{2}+x y+y^{2}\right)=2 x^{2}+3 x y$
$p=\left(2 x^{2}+3 x y\right)-\left(x^{2}+x y+y^{2}\right)$
$p=2 x^{2}+3 x y-x^{2}-x y-y^{2}$
$p=2 x^{2}-x^{2}+3 x y-x y-y^{2}$
$p=x^{2}+2 x y-y^{2}$
(b) What should be subtracted from $2 a+8 b+10$ to get $-3 a+7 b+16 ?$

Solution:-
Let us assume x be the required term.
Then,
$2 a+8 b+10-x=-3 a+7 b+16$
$x=(2 a+8 b+10)-(-3 a+7 b+16)$
$x=2 a+8 b+10+3 a-7 b-16$
$x=2 a+3 a+8 b-7 b+10-16$
$x=5 a+b-6$
5. What should be taken away from $3 x^{2}-4 y^{2}+5 x y+20$ to obtain $-x^{2}-y^{2}+6 x y+20 ?$

Solution:-

Let us assume a be the required term.
Then,
$3 x^{2}-4 y^{2}+5 x y+20-a=-x^{2}-y^{2}+6 x y+20$
$a=3 x^{2}-4 y^{2}+5 x y+20-\left(-x^{2}-y^{2}+6 x y+20\right)$
$a=3 x^{2}-4 y^{2}+5 x y+20+x^{2}+y^{2}-6 x y-20$
$a=3 x^{2}+x^{2}-4 y^{2}+y^{2}+5 x y-6 x y+20-20$
$a=4 x^{2}-3 y^{2}-x y$
6. (a) From the sum of $3 x-y+11$ and $-y-11$, subtract $3 x-y-11$.

Solution:-

First, we have to find out the sum of $3 x-y+11$ and $-y-11$.
$=3 x-y+11+(-y-11)$
$=3 x-y+11-y-11$
$=3 x-y-y+11-11$
$=3 x-2 y$
Now, subtract $3 x-y-11$ from $3 x-2 y$.
$=3 x-2 y-(3 x-y-11)$
$=3 x-2 y-3 x+y+11$
$=3 x-3 x-2 y+y+11$
$=-y+11$
(b) From the sum of $4+3 x$ and $5-4 x+2 x^{2}$, subtract the sum of $3 x^{2}-5 x$ and
$-x^{2}+2 x+5$.

Solution:-

First, we have to find out the sum of $4+3 x$ and $5-4 x+2 x^{2}$
$=4+3 \mathrm{x}+\left(5-4 \mathrm{x}+2 \mathrm{x}^{2}\right)$
$=4+3 x+5-4 x+2 x^{2}$
$=4+5+3 x-4 x+2 x^{2}$
$=9-x+2 x^{2}$
$=2 x^{2}-x+9 \ldots$ [equation 1]
Then, we have to find out the sum of $3 x^{2}-5 x$ and $-x^{2}+2 x+5$
$=3 x^{2}-5 x+\left(-x^{2}+2 x+5\right)$
$=3 x^{2}-5 x-x^{2}+2 x+5$
$=3 x^{2}-x^{2}-5 x+2 x+5$
$=2 x^{2}-3 x+5 \ldots$ [equation 2]
Now, we have to subtract equation (2) from equation (1)
$=2 x^{2}-x+9-\left(2 x^{2}-3 x+5\right)$
$=2 x^{2}-x+9-2 x^{2}+3 x-5$
$=2 x^{2}-2 x^{2}-x+3 x+9-5$
$=2 x+4$

