1. Get the algebraic expressions in the following cases using variables, constants and arithmetic operations.
(i) Subtraction of z from y.

Solution:-
$=Y-z$
(ii) One-half of the sum of numbers x and y .

Solution:-
$=1 / 2(x+y)$
$=(x+y) / 2$
(iii) The number \mathbf{z} multiplied by itself.

Solution:-
$=z \times z$
$=\mathrm{z}^{2}$
(iv) One-fourth of the product of numbers p and q .

Solution:-
$=1 / 4(p \times q)$
$=p q / 4$
(v) Numbers x and y, both squared and added.

Solution:-
$=x^{2}+y^{2}$
(vi) Number 5 added to three times the product of numbers m and n .

Solution:-
$=3 m n+5$
(vii) Product of numbers y and z subtracted from 10.

Solution:-
$=10-(\mathrm{y} \times \mathrm{z})$
$=10-y z$
(viii) Sum of numbers a and b subtracted from their product.

Solution:-
$=(a \times b)-(a+b)$
$=a b-(a+b)$
2. (i) Identify the terms and their factors in the following expressions.

Show the terms and factors by tree diagrams.
(a) $x-3$

Solution:-
Expression: $\mathrm{x}-3$
Terms: $\mathrm{x},-3$
Factors: $x ;-3$

(b) $1+x+x^{2}$

Solution:-

Expression: $1+\mathrm{x}+\mathrm{x}^{2}$
Terms: $1, \mathrm{x}, \mathrm{x}^{2}$
Factors: $1 ; x ; x, x$

Solution:-
Expression: y $-\mathrm{y}^{3}$
Terms: $y,-y^{3}$
Factors: $\mathrm{y} ;-\mathrm{y},-\mathrm{y},-\mathrm{y}$

(d) $5 x y^{2}+7 x^{2} y$

Solution:-
Expression: $5 x y^{2}+7 x^{2} y$
Terms: $5 x^{2}, 7 x^{2} y$
Factors: $5, \mathrm{x}, \mathrm{y}, \mathrm{y} ; 7, \mathrm{x}, \mathrm{x}, \mathrm{y}$

(e) $-a b+2 b^{2}-3 a^{2}$

Solution:-
Expression: $-\mathrm{ab}+2 \mathrm{~b}^{2}-3 \mathrm{a}^{2}$
Terms: -ab, $2 b^{2},-3 a^{2}$
Factors: $-\mathrm{a}, \mathrm{b} ; 2, \mathrm{~b}, \mathrm{~b} ;-3, \mathrm{a}, \mathrm{a}$

$$
-a b+2 b^{2}-3 a^{2}
$$

(ii) Identify terms and factors in the expressions given below.
(a) $-4 x+5$ (b) $-4 x+5 y(c) 5 y+3 y^{2}(d) x y+2 x^{2} y^{2}$
(e) $p q+q(f) 1.2 a b-2.4 b+3.6 a(g) 3 / 4 x+1 / 4$
(h) $0.1 p^{2}+0.2 q^{2}$

Solution:-

Expressions are defined as numbers, symbols and operators (such as.,$+- \times$ and \div) grouped together that show the value of something.

In algebra, a term is either a single number or variable or numbers and variables multiplied together. Terms are separated by + or - signs or sometimes by division.

Factors are defined as numbers we can multiply together to get another number.

SI.No.	Expression	Terms	Factors
(a)	$-4 x+5$	$-4 x$	$-4, x$
		5	5

		$0.2 q^{2}$	$0.2, \mathrm{q}, \mathrm{q}$

3. Identify the numerical coefficients of terms (other than constants) in the following expressions.
(i) $5-3 \mathrm{t}^{2}$ (ii) $1+\mathrm{t}+\mathrm{t}^{2}+\mathrm{t}^{3}$ (iii) $\mathrm{x}+2 \mathrm{xy}+3 \mathrm{y}$ (iv) $100 \mathrm{~m}+1000 \mathrm{n}$ (v) $-\mathrm{p}^{2} \mathrm{q}^{2}+7 \mathrm{pq}$ (vi) $1.2 \mathrm{a}+0.8 \mathrm{~b}$ (vii) 3.14 r^{2} (viii) 2 (l + b)
(ix) $0.1 \mathrm{y}+0.01 \mathrm{y}^{2}$

Solution:-

Expressions are defined as numbers, symbols and operators (such as.,$+- \times$ and \div) grouped together that show the value of something.

In algebra, a term is either a single number or variable or numbers and variables multiplied together. Terms are separated by + or - signs or sometimes by division.

A coefficient is a number used to multiply a variable ($2 x$ means 2 times x, so 2 is a coefficient). Variables on their own (without a number next to them) actually have a coefficient of 1 (x is really 1 x).

SI.No.	Expression	Terms	Coefficients
(i)	$5-3 \mathrm{t}^{2}$	$-3 t^{2}$	-3
(ii)	$1+t+t^{2}+t^{3}$	$\begin{aligned} & \mathrm{t} \\ & \mathrm{t}^{2} \\ & \mathrm{t}^{3} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
(iii)	$x+2 x y+3 y$	$\begin{aligned} & x \\ & 2 x y \\ & 3 y \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$
(iv)	$100 m+1000 n$	$\begin{aligned} & \text { 100m } \\ & \text { 1000n } \end{aligned}$	$\begin{aligned} & 100 \\ & 1000 \end{aligned}$
(v)	$-p^{2} q^{2}+7 p q$	$\begin{aligned} & -p^{2} q^{2} \\ & 7 p q \end{aligned}$	$\begin{aligned} & -1 \\ & 7 \end{aligned}$
(vi)	$1.2 \mathrm{a}+0.8 \mathrm{~b}$	$\begin{aligned} & 1.2 a \\ & 0.8 \mathrm{~b} \end{aligned}$	$\begin{aligned} & 1.2 \\ & 0.8 \end{aligned}$
(vii)	$3.14{ }^{\text {r }}$	$3.14{ }^{2}$	3.14

(viii)	$2(\mathrm{l}+\mathrm{b})$	$2 l$ 2 b	2 2
(ix)	$0.1 \mathrm{y}+0.01 \mathrm{y}^{2}$	0.1 y $0.01 \mathrm{y}^{2}$	0.1 0.01

4. (a) Identify terms which contain x and give the coefficient of x.
(i) $y^{2} x+y$ (ii) $13 y^{2}-8 y x$ (iii) $x+y+2$
(iv) $\mathbf{5}+\mathrm{z}+\mathrm{zx}$ (v) $1+\mathrm{x}+\mathrm{xy}$ (vi) $12 \mathrm{xy}^{2}+25$
(vii) $7 x+x y^{2}$

Solution:-

SI.No.	Expression	Terms	Coefficient of \mathbf{x}
(i)	$y^{2} x+y$	$y^{2} x$	y^{2}
(ii)	$13 y^{2}-8 y x$	$-8 y x$	$-8 y$
(iii)	$x+y+2$	x	1
(iv)	$5+z+z x$	x	1
(v)	$1+x+x y$	$12 x y^{2}+25$	$7 x+x y^{2}$
vi)		$12 x y^{2}$	$12 y^{2}$
(vii)		$7 x$ $x y^{2}$	7

(b) Identify terms which contain y^{2} and give the coefficient of y^{2}.
(i) $8-x^{2}$ (ii) $5 y^{2}+7 x$ (iii) $2 x^{2} y-15 x y^{2}+7 y^{2}$

Solution:-

SI.No.	Expression	Terms	Coefficient of y^{2}

(i)	$8-x y^{2}$	$-x y^{2}$	$-x$
(ii)	$5 y^{2}+7 x$	$5 y^{2}$	5
(iii)	$2 x^{2} y-15 x y^{2}+7 y^{2}$	$-15 x y^{2}$	$-15 x$
$7 y^{2}$	7		

5. Classify into monomials, binomials and trinomials.
(i) $4 y-7 z$

Solution:-

Binomial.
An expression which contains two unlike terms is called a binomial.
(ii) y^{2}

Solution:-

Monomial.
An expression with only one term is called a monomial.
(iii) $x+y-x y$

Solution:-

Trinomial.
An expression which contains three terms is called a trinomial.
(iv) 100

Solution:-
Monomial.
An expression with only one term is called a monomial.
(v) $a b-a-b$

Solution:-

Trinomial.
An expression which contains three terms is called a trinomial.
(vi) $5-3 \mathrm{t}$

Solution:-

Binomial.
An expression which contains two unlike terms is called a binomial.
(vii) $4 p^{2} q-4 p q^{2}$

Solution:-

Binomial.
An expression which contains two unlike terms is called a binomial.
(viii) 7 mn

Solution:-

Monomial.
An expression with only one term is called a monomial.
(ix) $z^{2}-3 z+8$

Solution:-

Trinomial.
An expression which contains three terms is called a trinomial.
(x) $a^{2}+b^{2}$

Solution:-

Binomial.
An expression which contains two unlike terms is called a binomial.
(xi) $z^{2}+z$

Solution:-
Binomial.
An expression which contains two unlike terms is called a binomial.
(xii) $1+x+x^{2}$

Solution:-

Trinomial.
An expression which contains three terms is called a trinomial.
6. State whether a given pair of terms is of like or unlike terms.
(i) 1, 100

Solution:-
Like term.
When terms have the same algebraic factors, they are like terms.
(ii) $-7 x,(5 / 2) x$

Solution:-

Like term.
When terms have the same algebraic factors, they are like terms.
(iii) - 29x, - 29y

Solution:-
Unlike terms.
The terms have different algebraic factors, they are unlike terms.
(iv) $14 \mathrm{xy}, 42 \mathrm{yx}$

Solution:-

Like term.
When terms have the same algebraic factors, they are like terms.
(v) $4 m^{2} p, 4 m^{2}$

Solution:-

Unlike terms.
The terms have different algebraic factors, they are unlike terms.
(vi) $12 x z, 12 x^{2} z^{2}$

Solution:-
Unlike terms.
The terms have different algebraic factors, they are unlike terms.
7. Identify like terms in the following.
(a) $-x^{2},-4 y x^{2}, 8 x^{2}, 2 x y^{2}, 7 y,-11 x^{2},-100 x,-11 y x, 20 x^{2} y,-6 x^{2}, y, 2 x y, 3 x$

Solution:-

When terms have the same algebraic factors, they are like terms.
They are,
$-x y^{2}, 2 x y^{2}$
$-4 y x^{2}, 20 x^{2} y$
$8 x^{2},-11 x^{2},-6 x^{2}$
$7 \mathrm{y}, \mathrm{y}$

- 100x, 3x
- 11yx, 2xy
(b) 10pq, 7p, 8q, - $p^{2} q^{2},-7 q p,-100 q,-23,12 q^{2} p^{2},-5 p^{2}, 41,2405 p, 78 q p$,
$13 p^{2} q, q^{2}, 701 p^{2}$

Solution:-

When terms have the same algebraic factors, they are like terms.
They are,
10pq, - 7qp, 78qp
7p, 2405p
8q, - 100q
$-p^{2} q^{2}, 12 q^{2} p^{2}$
$-23,41$
$-5 p^{2}, 701 p^{2}$
$13 p^{2} q, q^{2}$

EXERCISE 12.2

1. Simplify combining like terms.
(i) $21 \mathrm{~b}-32+7 \mathrm{~b}-20 \mathrm{~b}$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then,
$=(21 \mathrm{~b}+7 \mathrm{~b}-20 \mathrm{~b})-32$
$=\mathrm{b}(21+7-20)-32$
$=\mathrm{b}(28-20)-32$
$=b(8)-32$
$=8 \mathrm{~b}-32$
(ii) $-z^{2}+13 z^{2}-5 z+7 z^{3}-15 z$

Solution:-
When terms have the same algebraic factors, they are like terms.
Then,
$=7 z^{3}+\left(-z^{2}+13 z^{2}\right)+(-5 z-15 z)$
$=7 z^{3}+z^{2}(-1+13)+z(-5-15)$
$=7 z^{3}+z^{2}(12)+z(-20)$
$=7 z^{3}+12 z^{2}-20 z$
(iii) $p-(p-q)-q-(q-p)$

Solution:-
When terms have the same algebraic factors, they are like terms.
Then,
$=p-p+q-q-q+p$
$=p-q$
(iv) $3 a-2 b-a b-(a-b+a b)+3 a b+b-a$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then,
$=3 a-2 b-a b-a+b-a b+3 a b+b-a$
$=3 a-a-a-2 b+b+b-a b-a b+3 a b$
$=a(1-1-1)+b(-2+1+1)+a b(-1-1+3)$
$=a(1-2)+b(-2+2)+a b(-2+3)$
$=a(1)+b(0)+a b(1)$
$=a+a b$
(v) $5 x^{2} y-5 x^{2}+3 y x^{2}-3 y^{2}+x^{2}-y^{2}+8 x y^{2}-3 y^{2}$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then,
$=5 x^{2} y+3 y x^{2}-5 x^{2}+x^{2}-3 y^{2}-y^{2}-3 y^{2}$
$=x^{2} y(5+3)+x^{2}(-5+1)+y^{2}(-3-1-3)+8 x y^{2}$
$=x^{2} y(8)+x^{2}(-4)+y^{2}(-7)+8 x y^{2}$
$=8 x^{2} y-4 x^{2}-7 y^{2}+8 x y^{2}$
(vi) $\left(3 y^{2}+5 y-4\right)-\left(8 y-y^{2}-4\right)$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then,

$$
\begin{aligned}
& =3 y^{2}+5 y-4-8 y+y^{2}+4 \\
& =3 y^{2}+y^{2}+5 y-8 y-4+4 \\
& =y^{2}(3+1)+y(5-8)+(-4+4)
\end{aligned}
$$

$=y^{2}(4)+y(-3)+(0)$
$=4 y^{2}-3 y$
2. Add:
(i) $3 \mathrm{mn},-5 \mathrm{mn}, 8 \mathrm{mn},-4 \mathrm{mn}$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms.
$=3 m n+(-5 m n)+8 m n+(-4 m n)$
$=3 m n-5 m n+8 m n-4 m n$
$=m n(3-5+8-4)$
$=m n(11-9)$
$=m n(2)$
$=2 \mathrm{mn}$
(ii) $\mathrm{t}-8 \mathrm{tz}, 3 \mathrm{tz}-\mathrm{z}, \mathrm{z}-\mathrm{t}$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms.
$=\mathrm{t}-8 \mathrm{tz}+(3 \mathrm{tz}-\mathrm{z})+(\mathrm{z}-\mathrm{t})$
$=\mathrm{t}-8 \mathrm{tz}+3 \mathrm{tz}-\mathrm{z}+\mathrm{z}-\mathrm{t}$
$=\mathrm{t}-\mathrm{t}-8 \mathrm{tz}+3 \mathrm{tz}-\mathrm{z}+\mathrm{z}$
$=t(1-1)+t z(-8+3)+z(-1+1)$
$=t(0)+t z(-5)+z(0)$
$=-5 t z$
(iii) $-7 m n+5,12 m n+2,9 m n-8,-2 m n-3$

Solution:-

When terms have the same algebraic factors, they are like terms.

Then, we have to add the like terms.

$$
\begin{aligned}
& =-7 m n+5+12 m n+2+(9 m n-8)+(-2 m n-3) \\
& =-7 m n+5+12 m n+2+9 m n-8-2 m n-3 \\
& =-7 m n+12 m n+9 m n-2 m n+5+2-8-3 \\
& =m n(-7+12+9-2)+(5+2-8-3) \\
& =m n(-9+21)+(7-11) \\
& =m n(12)-4 \\
& =12 m n-4 \\
& \text { (iv) } a+b-3, b-a+3, a-b+3
\end{aligned}
$$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms.
$=a+b-3+(b-a+3)+(a-b+3)$
$=a+b-3+b-a+3+a-b+3$
$=a-a+a+b+b-b-3+3+3$
$=a(1-1+1)+b(1+1-1)+(-3+3+3)$
$=a(2-1)+b(2-1)+(-3+6)$
$=a(1)+b(1)+(3)$
$=\mathrm{a}+\mathrm{b}+3$
(v) $14 x+10 y-12 x y-13,18-7 x-10 y+8 x y, 4 x y$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms.

$$
\begin{aligned}
& =14 x+10 y-12 x y-13+(18-7 x-10 y+8 x y)+4 x y \\
& =14 x+10 y-12 x y-13+18-7 x-10 y+8 x y+4 x y \\
& =14 x-7 x+10 y-10 y-12 x y+8 x y+4 x y-13+18
\end{aligned}
$$

$=x(14-7)+y(10-10)+x y(-12+8+4)+(-13+18)$
$=x(7)+y(0)+x y(0)+(5)$
$=7 x+5$
(vi) $5 m-7 n, 3 n-4 m+2,2 m-3 m n-5$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms.
$=5 m-7 n+(3 n-4 m+2)+(2 m-3 m n-5)$
$=5 m-7 n+3 n-4 m+2+2 m-3 m n-5$
$=5 m-4 m+2 m-7 n+3 n-3 m n+2-5$
$=m(5-4+2)+n(-7+3)-3 m n+(2-5)$
$=m(3)+n(-4)-3 m n+(-3)$
$=3 m-4 n-3 m n-3$
(vii) $4 x^{2} y,-3 x y^{2},-5 x y^{2}, 5 x^{2} y$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms.
$=4 x^{2} y+\left(-3 x y^{2}\right)+\left(-5 x y^{2}\right)+5 x^{2} y$
$=4 x^{2} y+5 x^{2} y-3 x y^{2}-5 x y^{2}$
$=x^{2} y(4+5)+x y^{2}(-3-5)$
$=x^{2} y(9)+x y^{2}(-8)$
$=9 x^{2} y-8 x y^{2}$
(viii) $3 p^{2} q^{2}-4 p q+5,-10 p^{2} q^{2}, 15+9 p q+7 p^{2} q^{2}$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms.
$=3 p^{2} q^{2}-4 p q+5+\left(-10 p^{2} q^{2}\right)+15+9 p q+7 p^{2} q^{2}$
$=3 p^{2} q^{2}-10 p^{2} q^{2}+7 p^{2} q^{2}-4 p q+9 p q+5+15$
$=p^{2} q^{2}(3-10+7)+p q(-4+9)+(5+15)$
$=p^{2} q^{2}(0)+p q(5)+20$
$=5 p q+20$
(ix) $a b-4 a, 4 b-a b, 4 a-4 b$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms.

$$
\begin{aligned}
& =a b-4 a+(4 b-a b)+(4 a-4 b) \\
& =a b-4 a+4 b-a b+4 a-4 b \\
& =a b-a b-4 a+4 a+4 b-4 b \\
& =a b(1-1)+a(4-4)+b(4-4) \\
& =a b(0)+a(0)+b(0) \\
& =0
\end{aligned}
$$

(x) $x^{2}-y^{2}-1, y^{2}-1-x^{2}, 1-x^{2}-y^{2}$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms.

$$
\begin{aligned}
& =x^{2}-y^{2}-1+\left(y^{2}-1-x^{2}\right)+\left(1-x^{2}-y^{2}\right) \\
& =x^{2}-y^{2}-1+y^{2}-1-x^{2}+1-x^{2}-y^{2} \\
& =x^{2}-x^{2}-x^{2}-y^{2}+y^{2}-y^{2}-1-1+1 \\
& =x^{2}(1-1-1)+y^{2}(-1+1-1)+(-1-1+1) \\
& =x^{2}(1-2)+y^{2}(-2+1)+(-2+1) \\
& =x^{2}(-1)+y^{2}(-1)+(-1)
\end{aligned}
$$

$=-x^{2}-y^{2}-1$
3. Subtract:
(i) $-5 y^{2}$ from y^{2}

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms.
$=y^{2}-\left(-5 y^{2}\right)$
$=y^{2}+5 y^{2}$
$=6 y^{2}$
(ii) $6 x y$ from $-12 x y$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms.
$=-12 x y-6 x y$
$=-18 x y$
(iii) $(a-b)$ from $(a+b)$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms.
$=(a+b)-(a-b)$
$=a+b-a+b$
$=a-a+b+b$
$=a(1-1)+b(1+1)$
$=\mathrm{a}(0)+\mathrm{b}(2)$
$=2 \mathrm{~b}$
(iv) $a(b-5)$ from $b(5-a)$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms.
$=b(5-a)-a(b-5)$
$=5 b-a b-a b+5 a$
$=5 b+a b(-1-1)+5 a$
$=5 a+5 b-2 a b$
(v) $-m^{2}+5 m n$ from $4 m^{2}-3 m n+8$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms.
$=4 m^{2}-3 m n+8-\left(-m^{2}+5 m n\right)$
$=4 m^{2}-3 m n+8+m^{2}-5 m n$
$=4 m^{2}+m^{2}-3 m n-5 m n+8$
$=5 m^{2}-8 m n+8$
(vi) $-x^{2}+10 x-5$ from $5 x-10$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms.
$=5 x-10-\left(-x^{2}+10 x-5\right)$
$=5 x-10+x^{2}-10 x+5$
$=x^{2}+5 x-10 x-10+5$
$=x^{2}-5 x-5$
(vii) $5 a^{2}-7 a b+5 b^{2}$ from $3 a b-2 a^{2}-2 b^{2}$

Solution:-

When terms have the same algebraic factors, they are like terms.

Then, we have to subtract the like terms.
$=3 a b-2 a^{2}-2 b^{2}-\left(5 a^{2}-7 a b+5 b^{2}\right)$
$=3 a b-2 a^{2}-2 b^{2}-5 a^{2}+7 a b-5 b^{2}$
$=3 a b+7 a b-2 a^{2}-5 a^{2}-2 b^{2}-5 b^{2}$
$=10 a b-7 a^{2}-7 b^{2}$
(viii) $4 p q-5 q^{2}-3 p^{2}$ from $5 p^{2}+3 q^{2}-p q$

Solution:-

When terms have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms.
$=5 p^{2}+3 q^{2}-p q-\left(4 p q-5 q^{2}-3 p^{2}\right)$
$=5 p^{2}+3 q^{2}-p q-4 p q+5 q^{2}+3 p^{2}$
$=5 p^{2}+3 p^{2}+3 q^{2}+5 q^{2}-p q-4 p q$
$=8 p^{2}+8 q^{2}-5 p q$
4. (a) What should be added to $x^{2}+x y+y^{2}$ to obtain $2 x^{2}+3 x y$?

Solution:-

Let us assume p be the required term.
Then,
$p+\left(x^{2}+x y+y^{2}\right)=2 x^{2}+3 x y$
$p=\left(2 x^{2}+3 x y\right)-\left(x^{2}+x y+y^{2}\right)$
$p=2 x^{2}+3 x y-x^{2}-x y-y^{2}$
$p=2 x^{2}-x^{2}+3 x y-x y-y^{2}$
$p=x^{2}+2 x y-y^{2}$
(b) What should be subtracted from $2 a+8 b+10$ to get $-3 a+7 b+16 ?$

Solution:-
Let us assume x be the required term.
Then,
$2 a+8 b+10-x=-3 a+7 b+16$
$x=(2 a+8 b+10)-(-3 a+7 b+16)$
$x=2 a+8 b+10+3 a-7 b-16$
$x=2 a+3 a+8 b-7 b+10-16$
$x=5 a+b-6$
5. What should be taken away from $3 x^{2}-4 y^{2}+5 x y+20$ to obtain $-x^{2}-y^{2}+6 x y+20 ?$

Solution:-

Let us assume a be the required term.
Then,
$3 x^{2}-4 y^{2}+5 x y+20-a=-x^{2}-y^{2}+6 x y+20$
$a=3 x^{2}-4 y^{2}+5 x y+20-\left(-x^{2}-y^{2}+6 x y+20\right)$
$a=3 x^{2}-4 y^{2}+5 x y+20+x^{2}+y^{2}-6 x y-20$
$a=3 x^{2}+x^{2}-4 y^{2}+y^{2}+5 x y-6 x y+20-20$
$a=4 x^{2}-3 y^{2}-x y$
6. (a) From the sum of $3 x-y+11$ and $-y-11$, subtract $3 x-y-11$.

Solution:-

First, we have to find out the sum of $3 x-y+11$ and $-y-11$.
$=3 x-y+11+(-y-11)$
$=3 x-y+11-y-11$
$=3 x-y-y+11-11$
$=3 x-2 y$
Now, subtract $3 x-y-11$ from $3 x-2 y$.
$=3 x-2 y-(3 x-y-11)$
$=3 x-2 y-3 x+y+11$
$=3 x-3 x-2 y+y+11$
$=-y+11$
(b) From the sum of $4+3 x$ and $5-4 x+2 x^{2}$, subtract the sum of $3 x^{2}-5 x$ and
$-x^{2}+2 x+5$.

Solution:-

First, we have to find out the sum of $4+3 x$ and $5-4 x+2 x^{2}$
$=4+3 \mathrm{x}+\left(5-4 \mathrm{x}+2 \mathrm{x}^{2}\right)$
$=4+3 x+5-4 x+2 x^{2}$
$=4+5+3 x-4 x+2 x^{2}$
$=9-x+2 x^{2}$
$=2 x^{2}-x+9 \ldots$ [equation 1]
Then, we have to find out the sum of $3 x^{2}-5 x$ and $-x^{2}+2 x+5$
$=3 x^{2}-5 x+\left(-x^{2}+2 x+5\right)$
$=3 x^{2}-5 x-x^{2}+2 x+5$
$=3 x^{2}-x^{2}-5 x+2 x+5$
$=2 x^{2}-3 x+5 \ldots$ [equation 2]
Now, we have to subtract equation (2) from equation (1)
$=2 x^{2}-x+9-\left(2 x^{2}-3 x+5\right)$
$=2 x^{2}-x+9-2 x^{2}+3 x-5$
$=2 x^{2}-2 x^{2}-x+3 x+9-5$
$=2 x+4$

EXERCISE 12.3

1. If $m=2$, find the value of:
(i) $\mathrm{m}-2$

Solution:-
From the question, it is given that $\mathrm{m}=2$
Then, substitute the value of m in the question.
$=2-2$
$=0$
(ii) $3 m-5$

Solution:-

From the question, it is given that $\mathrm{m}=2$
Then, substitute the value of m in the question.
$=(3 \times 2)-5$
$=6-5$
= 1
(iii) $9-5 m$

Solution:-

From the question, it is given that $\mathrm{m}=2$
Then, substitute the value of m in the question.
$=9-(5 \times 2)$
$=9-10$
$=-1$
(iv) $3 m^{2}-2 m-7$

Solution:-

From the question, it is given that $\mathrm{m}=2$
Then, substitute the value of m in the question.
$=\left(3 \times 2^{2}\right)-(2 \times 2)-7$
$=(3 \times 4)-(4)-7$
= 12-4-7
$=12-11$
$=1$
(v) $(5 m / 2)-4$

Solution:-

From the question, it is given that $\mathrm{m}=2$
Then, substitute the value of m in the question.
$=((5 \times 2) / 2)-4$
$=(10 / 2)-4$
$=5-4$
= 1
2. If $p=-2$, find the value of:
(i) $4 p+7$

Solution:-

From the question, it is given that $\mathrm{p}=-2$
Then, substitute the value of p in the question.
$=(4 \times(-2))+7$
$=-8+7$
$=-1$
(ii) $-3 p^{2}+4 p+7$

Solution:-

From the question, it is given that $p=-2$

Then, substitute the value of p in the question.
$=\left(-3 \times(-2)^{2}\right)+(4 \times(-2))+7$
$=(-3 \times 4)+(-8)+7$
$=-12-8+7$
$=-20+7$
$=-13$
(iii) $-2 p^{3}-3 p^{2}+4 p+7$

Solution:-

From the question, it is given that $\mathrm{p}=-2$
Then, substitute the value of p in the question.
$=\left(-2 \times(-2)^{3}\right)-\left(3 \times(-2)^{2}\right)+(4 \times(-2))+7$
$=(-2 \times-8)-(3 \times 4)+(-8)+7$
$=16-12-8+7$
$=23-20$
$=3$
3. Find the value of the following expressions when $x=-1$:
(i) $2 x-7$

Solution:-
From the question, it is given that $\mathrm{x}=-1$
Then, substitute the value of x in the question.
$=(2 \times-1)-7$
$=-2-7$
$=-9$
(ii) $-x+2$

Solution:-

From the question, it is given that $\mathrm{x}=-1$

Then, substitute the value of x in the question.
$=-(-1)+2$
$=1+2$
$=3$
(iii) $x^{2}+2 x+1$

Solution:-

From the question, it is given that $x=-1$
Then, substitute the value of x in the question.
$=(-1)^{2}+(2 \times-1)+1$
$=1-2+1$
$=2-2$
$=0$
(iv) $2 x^{2}-x-2$

Solution:-

From the question, it is given that $x=-1$
Then, substitute the value of x in the question.
$=\left(2 \times(-1)^{2}\right)-(-1)-2$
$=(2 \times 1)+1-2$
$=2+1-2$
$=3-2$
$=1$
4. If $a=2, b=-2$, find the value of:
(i) $a^{2}+b^{2}$

Solution:-

From the question, it is given that $\mathrm{a}=2, \mathrm{~b}=-2$
Then, substitute the value of a and b in the question.
$=(2)^{2}+(-2)^{2}$
$=4+4$
$=8$
(ii) $a^{2}+a b+b^{2}$

Solution:-

From the question, it is given that $\mathrm{a}=2, \mathrm{~b}=-2$
Then, substitute the value of a and b in the question.
$=2^{2}+(2 \times-2)+(-2)^{2}$
$=4+(-4)+(4)$
$=4-4+4$
$=4$
(iii) $a^{2}-b^{2}$

Solution:-

From the question, it is given that $\mathrm{a}=2, \mathrm{~b}=-2$
Then, substitute the value of a and b in the question.
$=2^{2}-(-2)^{2}$
$=4-(4)$
$=4-4$
$=0$
5. When $a=0, b=-1$, find the value of the given expressions:
(i) $\mathbf{2 a}+\mathbf{2 b}$

Solution:-

From the question, it is given that $a=0, b=-1$
Then, substitute the value of a and b in the question.
$=(2 \times 0)+(2 \times-1)$
$=0-2$
$=-2$
(ii) $\mathbf{2 a}{ }^{2}+b^{2}+\mathbf{1}$

Solution:-

From the question, it is given that $\mathrm{a}=0, \mathrm{~b}=-1$
Then, substitute the value of a and b in the question.
$=\left(2 \times 0^{2}\right)+(-1)^{2}+1$
$=0+1+1$
$=2$
(iii) $2 a^{2} b+2 a b^{2}+a b$

Solution:-
From the question, it is given that $a=0, b=-1$
Then, substitute the value of a and b in the question.
$=\left(2 \times 0^{2} \times-1\right)+\left(2 \times 0 \times(-1)^{2}\right)+(0 \times-1)$
$=0+0+0$
$=0$
(iv) $\mathrm{a}^{2}+\mathrm{ab}+2$

Solution:-

From the question, it is given that $a=0, b=-1$
Then, substitute the value of a and b in the question.
$=\left(0^{2}\right)+(0 \times(-1))+2$
$=0+0+2$
$=2$
6. Simplify the expressions and find the value if x is equal to 2
(i) $x+7+4(x-5)$

Solution:-

From the question, it is given that $\mathrm{x}=2$

We have,
$=x+7+4 x-20$
$=5 \mathrm{x}+7-20$
Then, substitute the value of x in the equation.
$=(5 \times 2)+7-20$
$=10+7-20$
$=17-20$
$=-3$
(ii) $3(x+2)+5 x-7$

Solution:-
From the question, it is given that $\mathrm{x}=2$
We have,
$=3 x+6+5 x-7$
$=8 \mathrm{x}-1$
Then, substitute the value of x in the equation.
$=(8 \times 2)-1$
= 16 - 1
$=15$
(iii) $6 x+5(x-2)$

Solution:-

From the question, it is given that $\mathrm{x}=2$
We have,
$=6 x+5 x-10$
$=11 x-10$
Then, substitute the value of x in the equation.
$=(11 \times 2)-10$
$=22-10$
$=12$
(iv) $4(2 x-1)+3 x+11$

Solution:-
From the question, it is given that $\mathrm{x}=2$
We have,
$=8 x-4+3 x+11$
$=11 \mathrm{x}+7$
Then, substitute the value of x in the equation.
$=(11 \times 2)+7$
$=22+7$
$=29$
7. Simplify these expressions and find their values if $x=3, a=-1, b=-2$.
(i) $3 x-5-x+9$

Solution:-

From the question, it is given that $\mathrm{x}=3$
We have,
$=3 x-x-5+9$
$=2 x+4$
Then, substitute the value of x in the equation.
$=(2 \times 3)+4$
$=6+4$
$=10$
(ii) $2-8 x+4 x+4$

Solution:-
From the question, it is given that $\mathrm{x}=3$

We have,
$=2+4-8 x+4 x$
$=6-4 x$
Then, substitute the value of x in the equation.
$=6-(4 \times 3)$
$=6-12$
$=-6$
(iii) $3 a+5-8 a+1$

Solution:-
From the question, it is given that $\mathrm{a}=-1$
We have,
$=3 a-8 a+5+1$
$=-5 a+6$
Then, substitute the value of a in the equation.
$=-(5 \times(-1))+6$
$=-(-5)+6$
$=5+6$
$=11$
(iv) $10-3 b-4-5 b$

Solution:-

From the question, it is given that $b=-2$
We have,
$=10-4-3 b-5 b$
$=6-8 \mathrm{~b}$

Then, substitute the value of b in the equation.
$=6-(8 \times(-2))$
$=6-(-16)$
$=6+16$
$=22$
(v) $2 a-2 b-4-5+a$

Solution:-

From the question, it is given that $a=-1, b=-2$
We have,
$=2 a+a-2 b-4-5$
$=3 a-2 b-9$
Then, substitute the value of a and b in the equation.
$=(3 \times(-1))-(2 \times(-2))-9$
$=-3-(-4)-9$
$=-3+4-9$
$=-12+4$
$=-8$
8. (i) If $z=10$, find the value of $z^{3}-3(z-10)$.

Solution:-

From the question, it is given that $\mathrm{z}=10$
We have,
$=z^{3}-3 z+30$
Then, substitute the value of z in the equation.
$=(10)^{3}-(3 \times 10)+30$
$=1000-30+30$
$=1000$
(ii) If $p=-10$, find the value of $p^{2}-2 p-100$

Solution:-
From the question, it is given that $\mathrm{p}=-10$
We have,
$=p^{2}-2 p-100$
Then, substitute the value of p in the equation.
$=(-10)^{2}-(2 \times(-10))-100$
$=100+20-100$
$=20$
9. What should be the value of a if the value of $2 x^{2}+x-a$ equals to 5 , when $x=0$?

Solution:-

From the question, it is given that $\mathrm{x}=0$
We have,
$2 x^{2}+x-a=5$
$a=2 x^{2}+x-5$
Then, substitute the value of x in the equation.
$\mathrm{a}=\left(2 \times 0^{2}\right)+0-5$
$a=0+0-5$
$a=-5$
10. Simplify the expression and find its value when $\mathrm{a}=5$ and $\mathrm{b}=-3$.
$2\left(a^{2}+a b\right)+3-a b$
Solution:-
From the question, it is given that $\mathrm{a}=5$ and $\mathrm{b}=-3$
We have,
$=2 \mathrm{a}^{2}+2 \mathrm{ab}+3-\mathrm{ab}$
$=2 a^{2}+a b+3$
Then, substitute the value of a and b in the equation.
$=\left(2 \times 5^{2}\right)+(5 \times(-3))+3$
$=(2 \times 25)+(-15)+3$
$=50-15+3$
= $53-15$
$=38$

EXERCISE 12.4

1. Observe the patterns of digits made from line segments of equal length. You will find such segmented digits on the display of electronic watches or calculators.
(a)

6

11

16
$21 \ldots$

$$
(5 n+1) \ldots
$$

(b)

4

7

10
$13 \ldots$

$$
(3 n+1) \ldots
$$

(c)

7

12

17
$22 \ldots$
$(5 n+2) \ldots$

If the number of digits formed is taken to be n, the number of segments required to form n digits is given by the algebraic expression appearing on the right of each pattern. How many segments are
required to form 5, 10, 100 digits of the kind

Solution:-
(a) From the question, it is given that the number of segments required to form n digits of the kind
\square is $(5 n+1)$

Then,
The number of segments required to form 5 digits $=((5 \times 5)+1)$
$=(25+1)$
$=26$
The number of segments required to form 10 digits $=((5 \times 10)+1)$
$=(50+1)$
$=51$
The number of segments required to form 100 digits $=((5 \times 100)+1)$
$=(500+1)$
$=501$
(b) From the question, it is given that the number of segments required to form n digits of the kind

Then,
The number of segments required to form 5 digits $=((3 \times 5)+1)$
$=(15+1)$
$=16$
The number of segments required to form 10 digits $=((3 \times 10)+1)$
$=(30+1)$
$=31$
The number of segments required to form 100 digits $=((3 \times 100)+1)$
$=(300+1)$
$=301$
(c) From the question, it is given that the number of segments required to form n digits of the kind
\square is $(5 n+2)$

Then,
The number of segments required to form 5 digits $=((5 \times 5)+2)$
$=(25+2)$
$=27$
The number of segments required to form 10 digits $=((5 \times 10)+2)$
$=(50+2)$
$=52$
The number of segments required to form 100 digits $=((5 \times 100)+1)$
$=(500+2)$
$=502$
2. Use the given algebraic expression to complete the table of number patterns.

S. No.	Expression	Terms									
		1st	$2^{\text {nd }}$	3rd	$4^{\text {th }}$	$5^{\text {th }}$	\ldots	$10^{\text {th }}$	\ldots	$100^{\text {th }}$	\ldots
(i)	2n-1	1	3	5	7	9	-	19	-	-	-
(ii)	$3 n+2$	5	8	11	14	-	-	-	-	-	-
(iii)	$4 \mathrm{n}+1$	5	9	13	17	-	-	-	-	-	-

(iv)	$7 n+20$	27	34	41	48	-	-	-	-	-	-
(v)	$n^{2}+1$	2	5	10	17	-	-	-	-	10001	-

Solution:-

(i) From the table $(2 n-1)$

Then, $100^{\text {h }}$ term $=$?
Where $\mathrm{n}=100$
$=(2 \times 100)-1$
= 200 - 1
$=199$
(ii) From the table $(3 n+2)$
$5^{\text {th }}$ term $=$?
Where $\mathrm{n}=5$
$=(3 \times 5)+2$
$=15+2$
$=17$
Then, $10^{\text {th }}$ term $=$?
Where $\mathrm{n}=10$
$=(3 \times 10)+2$
$=30+2$
$=32$
Then, $100^{\text {th }}$ term $=$?
Where $\mathrm{n}=100$
$=(3 \times 100)+2$
$=300+2$
$=302$
(iii) From the table $(4 n+1)$
$5^{\text {th }}$ term $=$?
Where $\mathrm{n}=5$
$=(4 \times 5)+1$
$=20+1$
$=21$
Then, $10^{\text {th }}$ term $=$?
Where $\mathrm{n}=10$
$=(4 \times 10)+1$
$=40+1$
$=41$
Then, $100^{\text {th }}$ term $=$?
Where $\mathrm{n}=100$
$=(4 \times 100)+1$
$=400+1$
$=401$
(iv) From the table $(7 \mathrm{n}+20)$
$5^{\text {th }}$ term $=$?
Where $\mathrm{n}=5$
$=(7 \times 5)+20$
$=35+20$
$=55$
Then, $10^{\text {th }}$ term $=$?
Where $\mathrm{n}=10$
$=(7 \times 10)+20$
$=70+20$
$=90$
Then, $100^{\text {th }}$ term $=$?
Where $\mathrm{n}=100$
$=(7 \times 100)+20$
$=700+20$
$=720$
(v) From the table $\left(n^{2}+1\right)$
$5^{\text {th }}$ term $=$?
Where $\mathrm{n}=5$
$=\left(5^{2}\right)+1$
$=25+1$
$=26$
Then, $10^{\text {th }}$ term $=$?
Where $\mathrm{n}=10$
$=\left(10^{2}\right)+1$
$=100+1$
$=101$
So, the table is completed below.

S. No.	Expression	Terms									
		1 ${ }^{\text {st }}$	$2^{\text {nd }}$	$3{ }^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	\ldots	10 ${ }^{\text {th }}$	\ldots	$100^{\text {th }}$	\cdots
(i)	$2 \mathrm{n}-1$	1	3	5	7	9	-	19	-	199	-

(ii)	$3 n+2$	5	8	11	14	17	-	32	-	302	-
(iii)	$4 n+1$	5	9	13	17	21	-	41	-	401	-
(iv)	$7 n+20$	27	34	41	48	55	-	90	-	720	-
(v)	$n^{2}+1$	2	5	10	17	26	-	101	-	10001	-

