

EXERCISE 13.1

PAGE: 252

1. Find the value of:

(i) 2⁶

Solution:-

The above value can be written as,

 $= 2 \times 2 \times 2 \times 2 \times 2 \times 2$

= 64

(ii) 9³

Solution:-

The above value can be written as,

 $= 9 \times 9 \times 9$

= 729

(iii) 11²

Solution:-

The above value can be written as,

= 11 × 11

= 121

(iv) 5⁴

Solution:-

The above value can be written as,

 $= 5 \times 5 \times 5 \times 5$

= 625

2. Express the following in exponential form:

https://byjus.com

(i) 6 × 6 × 6 × 6

Solution:-

The given question can be expressed in the exponential form as 64.

(ii) t × t

Solution:-

The given question can be expressed in the exponential form as t^2 .

(iii) $b \times b \times b \times b$

Solution:-

The given question can be expressed in the exponential form as b⁴.

(iv) 5 × 5 × 7 × 7 × 7

Solution:-

The given question can be expressed in the exponential form as $5^2 \times 7^3$.

(v) 2 × 2 × a × a

Solution:-

The given question can be expressed in the exponential form as $2^2 \times a^2$.

(vi) $a \times a \times a \times c \times c \times c \times c \times d$

Solution:-

The given question can be expressed in the exponential form as $a^3 \times c^4 \times d$.

3. Express each of the following numbers using the exponential notation:

(i) 512

Solution:-

So it can be expressed in the exponential form as 2°.

(ii) 343

Solution:-

The factors of $343 = 7 \times 7 \times 7$

https://byjus.com

So it can be expressed in the exponential form as 7³.

(iii) 729

Solution:-

The factors of 729 = $3 \times 3 \times 3 \times 3 \times 3 \times 3$

So it can be expressed in the exponential form as 3⁶.

(iv) 3125

Solution:-

The factors of $3125 = 5 \times 5 \times 5 \times 5 \times 5$

So it can be expressed in the exponential form as 5⁵.

4. Identify the greater number, wherever possible, in each of the following.

(i) 4³ or 3⁴

Solution:-

The expansion of $4^3 = 4 \times 4 \times 4 = 64$

The expansion of $3^4 = 3 \times 3 \times 3 \times 3 = 81$

Clearly,

64 < 81

So, 4³ < 3⁴

Hence, 3⁴ is the greater number.

(ii) 5³ or 3⁵

Solution:-

The expansion of $5^3 = 5 \times 5 \times 5 = 125$

The expansion of $3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243$

Clearly,

125 < 243

So, 5³ < 3⁵

Hence, 3⁵ is the greater number.

(iii) 2⁸ or 8²

Solution:-

The expansion of $2^{\circ} = 2 \times 2 = 256$

The expansion of $8^2 = 8 \times 8 = 64$

Clearly,

256 > 64

So, 2⁸ > 8²

Hence, 2[°] is the greater number.

(iv) 100° or 2100

Solution:-

The expansion of $100^2 = 100 \times 100 = 10000$

The expansion of 2¹⁰⁰

Then,

2¹⁰⁰ = 1024 × 1024 × 1024 × 1024 × 1024 × 1024 × 1024 × 1024 × 1024 × 1024 = (1024)¹⁰

Clearly,

100² < 2¹⁰⁰

Hence, 2¹⁰⁰ is the greater number.

(v) 2¹⁰ or 10²

Solution:-

The expansion of $10^2 = 10 \times 10 = 100$

Clearly,

1024 > 100

So, 2¹⁰ > 10²

Hence, 2¹⁰ is the greater number.

https://byjus.com

5. Express each of the following as a product of powers of their prime factors:

(i) 648

Solution:-

Factors of $648 = 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3$

 $= 2^{3} \times 3^{4}$

(ii) 405

Solution:-

Factors of $405 = 3 \times 3 \times 3 \times 3 \times 5$

 $= 3^4 \times 5$

(iii) 540

Solution:-

Factors of $540 = 2 \times 2 \times 3 \times 3 \times 3 \times 5$

 $= 2^2 \times 3^3 \times 5$

(iv) 3,600

Solution:-

Factors of $3600 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5$

 $= 2^4 \times 3^2 \times 5^2$

6. Simplify:

(i) 2 × 10³

Solution:-

The above question can be written as,

= 2 × 10 × 10 × 10

= 2 × 1000

= 2000

(ii) 7² × 2²

Solution:-

The above question can be written as,

= 49 × 4

= 196

(iii) 2³ × 5

Solution:-

The above question can be written as,

= 2 × 2 × 2 × 5

= 8 × 5

= 40

(iv) 3 × 4⁴

Solution:-

The above question can be written as,

 $= 3 \times 4 \times 4 \times 4 \times 4$

= 3 × 256

= 768

(v) 0 × 10²

Solution:-

The above question can be written as,

= 0 × 10 × 10

= 0 × 100

= 0

(vi) 5² × 3³

Solution:-

The above question can be written as,

 $= 5 \times 5 \times 3 \times 3 \times 3$

= 25 × 27

= 675

(vii) 2⁴ × 3²

Solution:-

The above question can be written as,

 $= 2 \times 2 \times 2 \times 2 \times 3 \times 3$

= 16 × 9

= 144

(viii) 3² × 10⁴

Solution:-

The above question can be written as,

 $= 3 \times 3 \times 10 \times 10 \times 10 \times 10$

= 9 × 10000

= 90000

7. Simplify:

(i) (- 4)³

Solution:-

The expansion of -4³

= $-4 \times -4 \times -4$

= - 64

(ii) $(-3) \times (-2)^3$

Solution:-

The expansion of $(-3) \times (-2)^3$

```
= -3 \times -2 \times -2 \times -2
```

 $= -3 \times -8$

= 24

(iii) $(-3)^2 \times (-5)^2$

Solution:-

The expansion of $(-3)^2 \times (-5)^2$

 $= -3 \times -3 \times -5 \times -5$

= 9 × 25

= 225

(iv) (-2)³ × (-10)³

Solution:-

The expansion of $(-2)^3 \times (-10)^3$

= - 2 × - 2 × - 2 × - 10 × - 10 × - 10

= - 8 × - 1000

```
= 8000
```

8. Compare the following numbers:

(i) 2.7 × 10¹² ; 1.5 × 10⁸

Solution:-

By observing the question

Comparing the exponents of base 10,

Clearly,

2.7 × 10¹² > 1.5 × 10⁸

(ii) 4 × 10¹⁴ ; 3 × 10¹⁷

Solution:-

By observing the question

Comparing the exponents of base 10,

Clearly,

 $4 \times 10^{14} < 3 \times 10^{17}$