1. Find the value of:
(i) 2^{6}

Solution:-
The above value can be written as,
$=2 \times 2 \times 2 \times 2 \times 2 \times 2$
$=64$
(ii) 9^{3}

Solution:-
The above value can be written as,
$=9 \times 9 \times 9$
$=729$
(iii) 11^{2}

Solution:-
The above value can be written as,
$=11 \times 11$
$=121$
(iv) 5^{4}

Solution:-

The above value can be written as,
$=5 \times 5 \times 5 \times 5$
$=625$
2. Express the following in exponential form:
(i) $6 \times 6 \times 6 \times 6$

Solution:-

The given question can be expressed in the exponential form as 6^{4}.
(ii) $\mathrm{t} \times \mathrm{t}$

Solution:-

The given question can be expressed in the exponential form as t^{2}.
(iii) $\mathbf{b} \times \mathbf{b} \times \mathbf{b} \times \mathbf{b}$

Solution:-

The given question can be expressed in the exponential form as b^{4}.
(iv) $5 \times 5 \times 7 \times 7 \times 7$

Solution:-
The given question can be expressed in the exponential form as $5^{2} \times 7^{3}$.
(v) $2 \times 2 \times a \times a$

Solution:-

The given question can be expressed in the exponential form as $2^{2} \times a^{2}$.
(vi) $a \times a \times a \times c \times c \times c \times c \times d$

Solution:-
The given question can be expressed in the exponential form as $\mathrm{a}^{3} \times \mathrm{c}^{4} \times \mathrm{d}$.
3. Express each of the following numbers using the exponential notation:
(i) 512

Solution:-

The factors of $512=2 \times 2 \times 2$
So it can be expressed in the exponential form as 2°.
(ii) 343

Solution:-
The factors of $343=7 \times 7 \times 7$

So it can be expressed in the exponential form as 7^{3}.
(iii) 729

Solution:-
The factors of $729=3 \times 3 \times 3 \times 3 \times 3 \times 3$
So it can be expressed in the exponential form as 3^{6}.
(iv) 3125

Solution:-

The factors of $3125=5 \times 5 \times 5 \times 5 \times 5$
So it can be expressed in the exponential form as 5^{5}.
4. Identify the greater number, wherever possible, in each of the following.
(i) 4^{3} or 3^{4}

Solution:-

The expansion of $4^{3}=4 \times 4 \times 4=64$
The expansion of $3^{4}=3 \times 3 \times 3 \times 3=81$
Clearly,
$64<81$
So, $4^{3}<3^{4}$
Hence, 3^{4} is the greater number.
(ii) 5^{3} or 3^{5}

Solution:-

The expansion of $5^{3}=5 \times 5 \times 5=125$
The expansion of $3^{5}=3 \times 3 \times 3 \times 3 \times 3=243$
Clearly,
$125<243$
So, $5^{3}<3^{5}$
Hence, 3^{5} is the greater number.
(iii) $\mathbf{2}^{8}$ or $\mathbf{8}^{\mathbf{2}}$

Solution:-

The expansion of $2^{8}=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2=256$
The expansion of $8^{2}=8 \times 8=64$
Clearly,
$256>64$
So, $2^{8}>8^{2}$
Hence, 2^{8} is the greater number.
(iv) 100^{2} or $\mathbf{2}^{100}$

Solution:-
The expansion of $100^{2}=100 \times 100=10000$
The expansion of 2^{100}
$2^{10}=2 \times 2 \times 2=1024$
Then,
$2^{100}=1024 \times 1024 \times 1024=(1024)^{10}$
Clearly,
$100^{2}<2^{100}$
Hence, 2^{100} is the greater number.
(v) $\mathbf{2}^{10}$ or $\mathbf{1 0}^{2}$

Solution:-

The expansion of $2^{10}=2 \times 2 \times 2=1024$
The expansion of $10^{2}=10 \times 10=100$

Clearly,
$1024>100$
So, $2^{10}>10^{2}$
Hence, 2^{10} is the greater number.
5. Express each of the following as a product of powers of their prime factors:
(i) 648

Solution:-
Factors of $648=2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3$
$=2^{3} \times 3^{4}$
(ii) 405

Solution:-
Factors of $405=3 \times 3 \times 3 \times 3 \times 5$
$=3^{4} \times 5$
(iii) 540

Solution:-
Factors of $540=2 \times 2 \times 3 \times 3 \times 3 \times 5$
$=2^{2} \times 3^{3} \times 5$
(iv) 3,600

Solution:-
Factors of $3600=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5$
$=2^{4} \times 3^{2} \times 5^{2}$
6. Simplify:
(i) 2×10^{3}

Solution:-
The above question can be written as,
$=2 \times 10 \times 10 \times 10$
$=2 \times 1000$
$=2000$
(ii) $7^{2} \times 2^{2}$

Solution:-

The above question can be written as,
$=7 \times 7 \times 2 \times 2$
$=49 \times 4$
= 196
(iii) $2^{3} \times 5$

Solution:-

The above question can be written as,
$=2 \times 2 \times 2 \times 5$
$=8 \times 5$
$=40$
(iv) 3×4^{4}

Solution:-

The above question can be written as,
$=3 \times 4 \times 4 \times 4 \times 4$
$=3 \times 256$
$=768$
(v) 0×10^{2}

Solution:-

The above question can be written as,
$=0 \times 10 \times 10$
$=0 \times 100$
$=0$
(vi) $5^{2} \times 3^{3}$

Solution:-
The above question can be written as,
$=5 \times 5 \times 3 \times 3 \times 3$
$=25 \times 27$
$=675$
(vii) $\mathbf{2}^{4} \times 3^{2}$

Solution:-
The above question can be written as,
$=2 \times 2 \times 2 \times 2 \times 3 \times 3$
$=16 \times 9$
$=144$
(viii) $3^{2} \times 10^{4}$

Solution:-
The above question can be written as,
$=3 \times 3 \times 10 \times 10 \times 10 \times 10$
$=9 \times 10000$
$=90000$
7. Simplify:
(i) $(-4)^{3}$

Solution:-
The expansion of -4^{3}
$=-4 \times-4 \times-4$
$=-64$
(ii) $(-3) \times(-2)^{3}$

Solution:-

The expansion of $(-3) \times(-2)^{3}$
$=-3 \times-2 \times-2 \times-2$
$=-3 \times-8$
$=24$
(iii) $(-3)^{2} \times(-5)^{2}$

Solution:-

The expansion of $(-3)^{2} \times(-5)^{2}$
$=-3 \times-3 \times-5 \times-5$
$=9 \times 25$
$=225$
(iv) $(-2)^{3} \times(-10)^{3}$

Solution:-

The expansion of $(-2)^{3} \times(-10)^{3}$
$=-2 \times-2 \times-2 \times-10 \times-10 \times-10$
$=-8 \times-1000$
$=8000$
8. Compare the following numbers:
(i) $2.7 \times 10^{12} ; 1.5 \times 10^{8}$

Solution:-

By observing the question
Comparing the exponents of base 10,
Clearly,
$2.7 \times 10^{12}>1.5 \times 10^{8}$
(ii) $4 \times 10^{14} ; 3 \times 10^{17}$

Solution:-

By observing the question
Comparing the exponents of base 10 ,
Clearly,
$4 \times 10^{14}<3 \times 10^{17}$

