1. Using laws of exponents, simplify and write the answer in exponential form:
(i) $3^{2} \times 3^{4} \times 3^{8}$

Solution:-

By the rule of multiplying the powers with the same base $=a^{m} \times a^{n}=a^{m+n}$
Then,
$=(3)^{2+4+8}$
$=3^{14}$
(ii) $6^{15} \div 6^{10}$

Solution:-

By the rule of dividing the powers with the same base $=a^{m} \div a^{n}=a^{m-n}$
Then,
$=(6)^{15-10}$
$=6^{5}$
(iii) $a^{3} \times a^{2}$

Solution:-

By the rule of multiplying the powers with the same base $=a^{m} \times a^{n}=a^{m+n}$
Then,
$=(\mathrm{a})^{3+2}$
$=\mathrm{a}^{5}$
(iv) $7^{\times} \times 7^{2}$

Solution:-
By the rule of multiplying the powers with the same base $=a^{m} \times a^{n}=a^{m+n}$

Then,
$=(7)^{x+2}$
(v) $\left(5^{2}\right)^{3} \div 5^{3}$

Solution:-

By the rule of taking the power of as power $=\left(a^{m}\right)^{n}=a^{m n}$
$\left(5^{2}\right)^{3}$ can be written as $=(5)^{2 \times 3}$
$=5^{6}$
Now, $5^{6} \div 5^{3}$
By the rule of dividing the powers with the same base $=a^{m} \div a^{n}=a^{m-n}$
Then,
$=(5)^{6-3}$
$=5^{3}$
(vi) $2^{5} \times 5^{5}$

Solution:-

By the rule of multiplying the powers with the same exponents $=a^{m} \times b^{m}=a b^{m}$
Then,
$=(2 \times 5)^{5}$
$=10^{5}$
(vii) $\mathrm{a}^{4} \times \mathrm{b}^{4}$

Solution:-

By the rule of multiplying the powers with the same exponents $=a^{m} \times b^{m}=a b^{m}$
Then,
$=(a \times b)^{4}$
$=a b^{4}$
(viii) $\left(3^{4}\right)^{3}$

Solution:-

By the rule of taking the power of as power $=\left(a^{m}\right)^{n}=a^{m n}$
$\left(3^{4}\right)^{3}$ can be written as $=(3)^{4 \times 3}$
$=3^{12}$
(ix) $\left(2^{20} \div 2^{15}\right) \times 2^{3}$

Solution:-

By the rule of dividing the powers with the same base $=a^{m} \div a^{n}=a^{m-n}$
$\left(2^{20} \div 2^{15}\right)$ can be simplified as,
$=(2)^{20-15}$
$=2^{5}$
Then,
By the rule of multiplying the powers with the same base $=a^{m} \times a^{n}=a^{m+n}$
$2^{5} \times 2^{3}$ can be simplified as,
$=(2)^{5+3}$
$=2^{8}$
(x) $8^{t} \div 8^{2}$

Solution:-
By the rule of dividing the powers with the same base $=a^{m} \div a^{n}=a^{m-n}$
Then,
$=(8)^{t-2}$
2. Simplify and express each of the following in exponential form:
(i) $\left(2^{3} \times 3^{4} \times 4\right) /(3 \times 32)$

Solution:-

Factors of $32=2 \times 2 \times 2 \times 2 \times 2$
$=2^{5}$
Factors of $4=2 \times 2$
$=2^{2}$
Then,
$=\left(2^{3} \times 3^{4} \times 2^{2}\right) /\left(3 \times 2^{5}\right)$
$=\left(2^{3+2} \times 3^{4}\right) /\left(3 \times 2^{5}\right) \ldots\left[\because a^{m} \times a^{n}=a^{m+n}\right]$
$=\left(2^{5} \times 3^{4}\right) /\left(3 \times 2^{5}\right)$
$=2^{5-5} \times 3^{4-1} \ldots\left[\because a^{m} \div a^{n}=a^{m-n}\right]$
$=2^{0} \times 3^{3}$
$=1 \times 3^{3}$
$=3^{3}$
(ii) $\left(\left(5^{2}\right)^{3} \times 5^{4}\right) \div 5^{7}$

Solution:-
$\left(5^{2}\right)^{3}$ can be written as $=(5)^{2 \times 3} \ldots\left[\because\left(a^{m}\right)^{n}=a^{m m}\right]$
$=5^{6}$
Then,
$=\left(5^{6} \times 5^{4}\right) \div 5^{7}$
$=\left(5^{6+4}\right) \div 5^{7} \ldots\left[\because a^{m} \times a^{n}=a^{m+n}\right]$
$=5^{10} \div 5^{7}$
$=5^{10-7} \ldots\left[\because a^{m} \div a^{n}=a^{m-n}\right]$
$=5^{3}$
(iii) $25^{4} \div 5^{3}$

Solution:-

$(25)^{4}$ can be written as $=(5 \times 5)^{4}$
$=\left(5^{2}\right)^{4}$
$\left(5^{2}\right)^{4}$ can be written as $=(5)^{2 \times 4} \ldots\left[\because\left(a^{m}\right)^{n}=a^{m m}\right]$
$=5^{8}$
Then,
$=5^{8} \div 5^{3}$
$=5^{8-3} \ldots\left[\because \cdot a^{m} \div a^{n}=a^{m-n}\right]$
$=5^{5}$
(iv) $\left(3 \times 7^{2} \times 11^{8}\right) /\left(21 \times 11^{3}\right)$

Solution:-
Factors of $21=7 \times 3$
Then,
$=\left(3 \times 7^{2} \times 11^{8}\right) /\left(7 \times 3 \times 11^{3}\right)$
$=3^{1-1} \times 7^{2.1} \times 11^{8-3}$
$=3^{0} \times 7 \times 11^{5}$
$=1 \times 7 \times 11^{5}$
$=7 \times 11^{5}$
(v) $3^{7 /}\left(3^{4} \times 3^{3}\right)$

Solution:-
$=3^{7} /\left(3^{4+3}\right) \ldots\left[\because a^{m} \times a^{n}=a^{m+n}\right]$
$=3^{7} / 3^{7}$
$=3^{7-7} \ldots\left[\because \cdot a^{m} \div a^{n}=a^{m-n}\right]$
$=3^{\circ}$
= 1
(vi) $2^{0}+3^{0}+4^{0}$

Solution:-

$=1+1+1$
$=3$
(vii) $2^{\circ} \times 3^{0} \times 4^{0}$

Solution:-
$=1 \times 1 \times 1$
$=1$
(viii) $\left(3^{0}+2^{\circ}\right) \times 5^{0}$

Solution:-
$=(1+1) \times 1$
$=(2) \times 1$
$=2$
(ix) $\left(2^{8} \times a^{5}\right) /\left(4^{3} \times a^{3}\right)$

Solution:-

$(4)^{3}$ can be written as $=(2 \times 2)^{3}$
$=\left(2^{2}\right)^{3}$
$\left(2^{2}\right)^{3}$ can be written as $=(2)^{2 \times 3} \ldots\left[\because\left(a^{m}\right)^{n}=a^{m m}\right]$
$=2^{6}$
Then,
$=\left(2^{8} \times a^{5}\right) /\left(2^{6} \times a^{3}\right)$
$=2^{8-6} \times a^{5-3} \ldots\left[\because a^{m} \div a^{n}=a^{m-n}\right]$
$=2^{2} \times a^{2} \ldots\left[\because\left(a^{m}\right)^{n}=a^{m m}\right]$
$=2 \mathrm{a}^{2}$
(x) $\left(a^{5} / a^{3}\right) \times a^{8}$

Solution:-
$=\left(a^{5.3}\right) \times a^{8} \ldots\left[\because \cdot a^{m} \div a^{n}=a^{m-n}\right]$
$=\mathrm{a}^{2} \times \mathrm{a}^{8}$
$=a^{2+8} \ldots\left[\because \cdot a^{m} \times a^{n}=a^{m+n}\right]$
$=a^{10}$
(xi) $\left(4^{5} \times a^{8} b^{3}\right) /\left(4^{5} \times a^{5} b^{2}\right)$

Solution:-

$$
=4^{5-5} \times\left(a^{8-5} \times b^{3-2}\right) \ldots\left[\because a^{m} \div a^{n}=a^{m-n}\right]
$$

$=4^{0} \times\left(a^{3} b\right)$
$=1 \times a^{3} b$
$=a^{3} b$
(xii) $\left(2^{3} \times 2\right)^{2}$

Solution:-
$=\left(2^{3+1}\right)^{2} \ldots\left[\because a^{m} \times a^{n}=a^{m+n}\right]$
$=\left(2^{4}\right)^{2}$
$\left(2^{4}\right)^{2}$ can be written as $=(2)^{4 \times 2} \ldots\left[\because\left(a^{m}\right)^{n}=a^{m n}\right]$
$=2^{8}$
3. Say true or false and justify your answer:
(i) $10 \times 10^{11}=100^{11}$

Solution:-

Let us consider Left Hand Side $(\mathrm{LHS})=10 \times 10^{11}$
$=10^{1+11} \ldots\left[\because a^{m} \times a^{n}=a^{m+n}\right]$
$=10^{12}$
Now, consider Right Hand Side $($ RHS $)=100^{11}$
$=(10 \times 10)^{11}$
$=\left(10^{1+1}\right)^{11}$
$=\left(10^{2}\right)^{11}$
$=(10)^{2 \times 11} \ldots\left[\because\left(a^{m}\right)^{n}=a^{m n}\right]$
$=10^{22}$
By comparing LHS and RHS,
LHS \neq RHS
Hence, the given statement is false.
(ii) $\mathbf{2}^{3}>5^{2}$

Solution:-

Let us consider LHS $=2^{3}$
Expansion of $2^{3}=2 \times 2 \times 2$
$=8$
Now, consider RHS = 5^{2}
Expansion of $5^{2}=5 \times 5$
$=25$
By comparing LHS and RHS,
LHS < RHS
$2^{3}<5^{2}$
Hence, the given statement is false.
(iii) $2^{3} \times 3^{2}=6^{5}$

Solution:-

Let us consider LHS $=2^{3} \times 3^{2}$
Expansion of $2^{3} \times 3^{2}=2 \times 2 \times 2 \times 3 \times 3$
$=72$
Now, consider RHS = 6^{5}
Expansion of $6^{5}=6 \times 6 \times 6 \times 6 \times 6$
$=7776$
By comparing LHS and RHS,
$72 \neq 7776$
LHS \neq RHS
Hence, the given statement is false.
(iv) $3^{0}=(1000)^{0}$

Solution:-
Let us consider LHS = 3°
= 1

Now, consider RHS $=1000^{\circ}$

$$
=1
$$

By comparing LHS and RHS,
LHS = RHS
$3^{\circ}=1000^{\circ}$
Hence, the given statement is true.
4. Express each of the following as a product of prime factors only in exponential form:
(i) 108×192

Solution:-

The factors of $108=2 \times 2 \times 3 \times 3 \times 3$
$=2^{2} \times 3^{3}$
The factors of $192=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3$
$=2^{6} \times 3$
Then,
$=\left(2^{2} \times 3^{3}\right) \times\left(2^{6} \times 3\right)$
$=2^{2+6} \times 3^{3+1} \ldots\left[\because a^{m} \times a^{n}=a^{m+n}\right]$
$=2^{8} \times 3^{4}$
(ii) $\mathbf{2 7 0}$

Solution:-

The factors of $270=2 \times 3 \times 3 \times 3 \times 5$
$=2 \times 3^{3} \times 5$
(iii) 729×64

The factors of $729=3 \times 3 \times 3 \times 3 \times 3 \times 3$
$=3^{6}$
The factors of $64=2 \times 2 \times 2 \times 2 \times 2 \times 2$
$=2^{6}$

Then,
$=\left(3^{6} \times 2^{6}\right)$
$=3^{6} \times 2^{6}$
(iv) 768

Solution:-
The factors of $768=2 \times 2 \times 3$
$=2^{8} \times 3$
5. Simplify:
(i) $\left(\left(2^{5}\right)^{2} \times 7^{3}\right) /\left(8^{3} \times 7\right)$

Solution:-
8^{3} can be written as $=(2 \times 2 \times 2)^{3}$
$=\left(2^{3}\right)^{3}$
We have,
$=\left(\left(2^{5}\right)^{2} \times 7^{3}\right) /\left(\left(2^{3}\right)^{3} \times 7\right)$
$=\left(2^{5 \times 2} \times 7^{3}\right) /\left(\left(2^{3 \times 3} \times 7\right) \ldots\left[\because\left(a^{m}\right)^{n}=a^{m m}\right]\right.$
$=\left(2^{10} \times 7^{3}\right) /\left(2^{9} \times 7\right)$
$=\left(2^{10-9} \times 7^{3-1}\right) \ldots\left[\because a^{m} \div a^{n}=a^{m-n}\right]$
$=2 \times 7^{2}$
$=2 \times 7 \times 7$
$=98$
(ii) $\left(25 \times 5^{2} \times t^{8}\right) /\left(10^{3} \times t^{4}\right)$

Solution:-

25 can be written as $=5 \times 5$
$=5^{2}$
10^{3} can be written as $=10^{3}$
$=(5 \times 2)^{3}$
$=5^{3} \times 2^{3}$
We have,
$=\left(5^{2} \times 5^{2} \times t^{8}\right) /\left(5^{3} \times 2^{3} \times t^{4}\right)$
$=\left(5^{2+2} \times t^{8}\right) /\left(5^{3} \times 2^{3} \times t^{4}\right) \ldots\left[\because a^{m} \times a^{n}=a^{m+n}\right]$
$=\left(5^{4} \times t^{8}\right) /\left(5^{3} \times 2^{3} \times t^{4}\right)$
$=\left(5^{4-3} \times t^{8-4}\right) / 2^{3} \ldots\left[\because a^{m} \div a^{n}=a^{m-n}\right]$
$=\left(5 \times t^{4}\right) /(2 \times 2 \times 2)$
$=\left(5 t^{4}\right) / 8$
(iii) $\left(3^{5} \times 10^{5} \times 25\right) /\left(5^{7} \times 6^{5}\right)$

Solution:-

10^{5} can be written as $=(5 \times 2)^{5}$
$=5^{5} \times 2^{5}$
25 can be written as $=5 \times 5$
$=5^{2}$
6^{5} can be written as $=(2 \times 3)^{5}$
$=2^{5} \times 3^{5}$
Then we have,

$$
\begin{aligned}
& =\left(3^{5} \times 5^{5} \times 2^{5} \times 5^{2}\right) /\left(5^{7} \times 2^{5} \times 3^{5}\right) \\
& =\left(3^{5} \times 5^{5+2} \times 2^{5}\right) /\left(5^{7} \times 2^{5} \times 3^{5}\right) \ldots\left[\because \mathrm{a}^{m} \times \mathrm{a}^{n}=\mathrm{a}^{m+n}\right] \\
& =\left(3^{5} \times 5^{7} \times 2^{5}\right) /\left(5^{7} \times 2^{5} \times 3^{5}\right) \\
& =\left(3^{5-5} \times 5^{7-7} \times 2^{5-5}\right) \\
& =\left(3^{0} \times 5^{0} \times 2^{0}\right) \ldots\left[\because a^{m} \div a^{n}=a^{m-n}\right] \\
& =1 \times 1 \times 1 \\
& =1
\end{aligned}
$$

