PAGE: 260

EXERCISE 13.2

1. Using laws of exponents, simplify and write the answer in exponential form:
(i) $3^2 \times 3^4 \times 3^8$
Solution:-
By the rule of multiplying the powers with the same base = $a^m \times a^n = a^{m+n}$
Then,
$= (3)^{2+4+8}$
$=3^{14}$
(ii) 6 ¹⁵ ÷ 6 ¹⁰
Solution:-
By the rule of dividing the powers with the same base = $a^m \div a^n = a^{m-n}$
Then,
$= (6)^{15-10}$
= 65
(iii) a³ × a²
Solution:-
By the rule of multiplying the powers with the same base = $a^m \times a^n = a^{m+n}$
Then,
$= (a)^{3+2}$
= a ⁵
(iv) $7^x \times 7^2$
Solution:-

By the rule of multiplying the powers with the same base = $a^m \times a^n = a^{m+n}$

Solution:-

By the rule of taking the power of as power = $(a^m)^n = a^{mn}$

 $(3^4)^3$ can be written as = $(3)^{4 \times 3}$

= 312

(ix) $(2^{20} \div 2^{15}) \times 2^3$

Solution:-

By the rule of dividing the powers with the same base = $a^m \div a^n = a^{m-n}$

(220 ÷ 215) can be simplified as,

 $= (2)^{20-15}$

= 25

Then,

By the rule of multiplying the powers with the same base = $a^m \times a^n = a^{m+n}$

2⁵ × 2³ can be simplified as,

 $= (2)^{5+3}$

= 28

(x) $8^t \div 8^2$

Solution:-

By the rule of dividing the powers with the same base = $a^m \div a^n = a^{m-n}$

Then,

 $= (8)^{t-2}$

2. Simplify and express each of the following in exponential form:

(i)
$$(2^3 \times 3^4 \times 4)/(3 \times 32)$$

Solution:-

Factors of $32 = 2 \times 2 \times 2 \times 2 \times 2$

= 25

Factors of $4 = 2 \times 2$

Then,

$$= (2^3 \times 3^4 \times 2^2)/(3 \times 2^5)$$

=
$$(2^{3+2} \times 3^4) / (3 \times 2^5) \dots [\because a^m \times a^n = a^{m+n}]$$

$$= (2^5 \times 3^4) / (3 \times 2^5)$$

$$= 2^{5-5} \times 3^{4-1} \dots [\because a^m \div a^n = a^{m-n}]$$

$$= 2^{\circ} \times 3^{\circ}$$

$$= 1 \times 3^3$$

$$= 3^{3}$$

(ii)
$$((5^2)^3 \times 5^4) \div 5^7$$

Solution:-

$$(5^2)^3$$
 can be written as = $(5)^{2 \times 3}$... [: $(a^m)^n = a^{mn}$]

$$= 5^{6}$$

Then,

$$= (5^6 \times 5^4) \div 5^7$$

=
$$(5^{6+4}) \div 5^7 \dots [\because a^m \times a^n = a^{m+n}]$$

$$=5^{10} \div 5^7$$

$$= 5^{10-7} \dots [\because a^m \div a^n = a^{m-n}]$$

 $= 5^{3}$

Solution:-

$$(25)^4$$
 can be written as = $(5 \times 5)^4$

$$= (5^2)^4$$

$$(5^2)^4$$
 can be written as = $(5)^{2 \times 4}$... [: $(a^m)^n = a^{mn}$]

= 5⁸

Then,

$$= 5^8 \div 5^3$$

=
$$5^{8-3}$$
 ... [: $a^m \div a^n = a^{m-n}$]

= 5⁵

(iv)
$$(3 \times 7^2 \times 11^8)/(21 \times 11^3)$$

Solution:-

Factors of $21 = 7 \times 3$

Then,

=
$$(3 \times 7^2 \times 11^8)/(7 \times 3 \times 11^3)$$

$$= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$$

$$= 3^{\circ} \times 7 \times 11^{\circ}$$

$$= 1 \times 7 \times 11^{5}$$

$$= 7 \times 11^{5}$$

(v)
$$3^7/(3^4 \times 3^3)$$

Solution:-

$$= 3^{7}/(3^{4+3}) \dots [\because a^{m} \times a^{n} = a^{m+n}]$$

 $= 3^7/3^7$

$$= 3^{7-7} \dots [:a^m \div a^n = a^{m-n}]$$

 $= 3^{\circ}$

= 1

(vi)
$$2^{\circ} + 3^{\circ} + 4^{\circ}$$

Solution:-

$$= 1 + 1 + 1$$

= 3

(vii)
$$2^{\circ} \times 3^{\circ} \times 4^{\circ}$$

Solution:-

$$= 1 \times 1 \times 1$$

= 1

(viii)
$$(3^{\circ} + 2^{\circ}) \times 5^{\circ}$$

Solution:-

$$= (1 + 1) \times 1$$

$$= (2) \times 1$$

= 2

(ix)
$$(2^8 \times a^5)/(4^3 \times a^3)$$

Solution:-

 $(4)^3$ can be written as = $(2 \times 2)^3$

$$= (2^2)^3$$

 $(2^2)^3$ can be written as = $(2)^{2\times 3}$... $[\because (a^m)^n = a^{mn}]$

 $= 2^{6}$

Then,

=
$$(2^8 \times a^5)/(2^6 \times a^3)$$

$$= 2^{8-6} \times a^{5-3} \dots [\because a^m \div a^n = a^{m-n}]$$

$$= 2^2 \times a^2 \dots [\because (a^m)^n = a^{mn}]$$

 $= 2a^2$

$(x) (a^5/a^3) \times a^8$

Solution:-

=
$$(a^{5-3}) \times a^8 \dots [:a^m \div a^n = a^{m-n}]$$

$$= a^2 \times a^8$$

=
$$a^{2+8}$$
 ... [: $a^m \times a^n = a^{m+n}$]

= a¹⁰

(xi) $(4^5 \times a^8b^3)/(4^5 \times a^5b^2)$

Solution:-

=
$$4^{5-5} \times (a^{8-5} \times b^{3-2}) \dots [\because a^m \div a^n = a^{m-n}]$$

$$= 4^{\circ} \times (a^{3}b)$$

$$= 1 \times a^3b$$

 $= a^3b$

(xii)
$$(2^3 \times 2)^2$$

Solution:-

=
$$(2^{3+1})^2$$
 ... [: $a^m \times a^n = a^{m+n}$]

$$= (2^4)^2$$

$$(2^4)^2$$
 can be written as = $(2)^{4 \times 2}$... [: $(a^m)^n = a^{mn}$]

= 28

3. Say true or false and justify your answer:

(i)
$$10 \times 10^{11} = 100^{11}$$

Solution:-

Let us consider Left Hand Side (LHS) = 10 × 10¹¹

=
$$10^{1+11}$$
 ... [: $a^m \times a^n = a^{m+n}$]

 $= 10^{12}$

Now, consider Right Hand Side (RHS) = 10011

$$= (10 \times 10)^{11}$$

$$= (10^{1+1})^{11}$$

$$= (10^2)^{11}$$

=
$$(10)^{2 \times 11} \dots [\because (a^m)^n = a^{mn}]$$

 $= 10^{22}$

By comparing LHS and RHS,

LHS ≠ RHS

Hence, the given statement is false.

(ii) $2^3 > 5^2$

Solution:-

Now, consider RHS = 1000° = 1

By comparing LHS and RHS,

LHS = RHS

 $3^{\circ} = 1000^{\circ}$

Hence, the given statement is true.

- 4. Express each of the following as a product of prime factors only in exponential form:
- (i) 108 × 192

Solution:-

The factors of $108 = 2 \times 2 \times 3 \times 3 \times 3$

 $= 2^2 \times 3^3$

The factors of $192 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3$

 $= 2^6 \times 3$

Then,

$$= (2^2 \times 3^3) \times (2^6 \times 3)$$

$$= 2^{_{^{2+6}}} \times 3^{_{^{3+1}}} \ldots [\because a^m \times a^n = a^{_{^{m+n}}}]$$

 $= 2^8 \times 3^4$

(ii) 270

Solution:-

The factors of 270 = $2 \times 3 \times 3 \times 3 \times 5$

$$= 2 \times 3^3 \times 5$$

(iii) 729 × 64

The factors of 729 = $3 \times 3 \times 3 \times 3 \times 3 \times 3$

= 36

The factors of $64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$

 $= 2^{6}$

Then,

$$= (3^6 \times 2^6)$$

$$= 3^6 \times 2^6$$

(iv) 768

Solution:-

The factors of 768 = $2 \times 2 \times 3$

$$= 2^8 \times 3$$

5. Simplify:

(i)
$$((2^5)^2 \times 7^3)/(8^3 \times 7)$$

Solution:-

 8^{3} can be written as = $(2 \times 2 \times 2)^{3}$

$$= (2^3)^3$$

We have,

$$= ((2^5)^2 \times 7^3)/((2^3)^3 \times 7)$$

=
$$(2^{5 \times 2} \times 7^3)/((2^{3 \times 3} \times 7) \dots [\because (a^m)^n = a^{mn}]$$

$$= (2^{10} \times 7^3)/(2^9 \times 7)$$

=
$$(2^{10-9} \times 7^{3-1}) \dots [\because a^m \div a^n = a^{m-n}]$$

$$= 2 \times 7^2$$

$$= 2 \times 7 \times 7$$

(ii)
$$(25 \times 5^2 \times t^8)/(10^3 \times t^4)$$

Solution:-

25 can be written as = 5×5

$$= 5^{2}$$

 10^{3} can be written as = 10^{3}

$$= (5 \times 2)^3$$

$$= 5^3 \times 2^3$$

We have,

=
$$(5^2 \times 5^2 \times t^8)/(5^3 \times 2^3 \times t^4)$$

=
$$(5^{2+2} \times t^8)/(5^3 \times 2^3 \times t^4) \dots [\because a^m \times a^n = a^{m+n}]$$

=
$$(5^4 \times t^8)/(5^3 \times 2^3 \times t^4)$$

=
$$(5^{4-3} \times t^{8-4})/2^3 \dots [\because a^m \div a^n = a^{m-n}]$$

$$= (5 \times t^4)/(2 \times 2 \times 2)$$

$$= (5t^4)/8$$

(iii)
$$(3^5 \times 10^5 \times 25)/(5^7 \times 6^5)$$

Solution:-

10⁵ can be written as = (5 × 2)⁵

$$= 5^5 \times 2^5$$

25 can be written as = 5×5

$$= 5^{2}$$

6⁵ can be written as = $(2 \times 3)^5$

$$= 2^5 \times 3^5$$

Then we have,

=
$$(3^5 \times 5^5 \times 2^5 \times 5^2)/(5^7 \times 2^5 \times 3^5)$$

=
$$(3^5 \times 5^{5+2} \times 2^5)/(5^7 \times 2^5 \times 3^5) \dots [\because a^m \times a^n = a^{m+n}]$$

=
$$(3^5 \times 5^7 \times 2^5)/(5^7 \times 2^5 \times 3^5)$$

$$= (3^{5-5} \times 5^{7-7} \times 2^{5-5})$$

=
$$(3^{\circ} \times 5^{\circ} \times 2^{\circ}) \dots [\because a^{m} \div a^{n} = a^{m-n}]$$

$$= 1 \times 1 \times 1$$

= 1