EXERCISE 13.3

1. Write the following numbers in the expanded forms:
(a) 279404

Solution:-

The expanded form of the number 279404 is,
$=(2 \times 100000)+(7 \times 10000)+(9 \times 1000)+(4 \times 100)+(0 \times 10)+(4 \times 1)$
Now we can express it using powers of 10 in the exponent form,
$=\left(2 \times 10^{5}\right)+\left(7 \times 10^{4}\right)+\left(9 \times 10^{3}\right)+\left(4 \times 10^{2}\right)+\left(0 \times 10^{1}\right)+\left(4 \times 10^{0}\right)$
(b) 3006194

Solution:-

The expanded form of the number 3006194 is,
$=(3 \times 1000000)+(0 \times 100000)+(0 \times 10000)+(6 \times 1000)+(1 \times 100)+(9 \times 10)+(4 \times 1)$
Now we can express it using powers of 10 in the exponent form,
$=\left(3 \times 10^{6}\right)+\left(0 \times 10^{5}\right)+\left(0 \times 10^{4}\right)+\left(6 \times 10^{3}\right)+\left(1 \times 10^{2}\right)+\left(9 \times 10^{1}\right)+\left(4 \times 10^{0}\right)$
(c) 2806196

Solution:-

The expanded form of the number 2806196 is,
$=(2 \times 1000000)+(8 \times 100000)+(0 \times 10000)+(6 \times 1000)+(1 \times 100)+(9 \times 10)+(6 \times 1)$
Now we can express it using powers of 10 in the exponent form,
$=\left(2 \times 10^{6}\right)+\left(8 \times 10^{5}\right)+\left(0 \times 10^{4}\right)+\left(6 \times 10^{3}\right)+\left(1 \times 10^{2}\right)+\left(9 \times 10^{1}\right)+\left(6 \times 10^{0}\right)$
(d) 120719

Solution:-

The expanded form of the number 120719 is,
$=(1 \times 100000)+(2 \times 10000)+(0 \times 1000)+(7 \times 100)+(1 \times 10)+(9 \times 1)$
Now we can express it using powers of 10 in the exponent form,
$=\left(1 \times 10^{5}\right)+\left(2 \times 10^{4}\right)+\left(0 \times 10^{3}\right)+\left(7 \times 10^{2}\right)+\left(1 \times 10^{1}\right)+\left(9 \times 10^{0}\right)$
(e) 20068

Solution:-

The expanded form of the number 20068 is,
$=(2 \times 10000)+(0 \times 1000)+(0 \times 100)+(6 \times 10)+(8 \times 1)$
Now we can express it using powers of 10 in the exponent form,
$=\left(2 \times 10^{4}\right)+\left(0 \times 10^{3}\right)+\left(0 \times 10^{2}\right)+\left(6 \times 10^{1}\right)+\left(8 \times 10^{0}\right)$
2. Find the number from each of the following expanded forms:
(a) $(8 \times 10)^{4}+(6 \times 10)^{3}+(0 \times 10)^{2}+(4 \times 10)^{1}+(5 \times 10)^{0}$

Solution:-

The expanded form is,
$=(8 \times 10000)+(6 \times 1000)+(0 \times 100)+(4 \times 10)+(5 \times 1)$
$=80000+6000+0+40+5$
$=86045$
(b) $(4 \times 10)^{5}+(5 \times 10)^{3}+(3 \times 10)^{2}+(2 \times 10)^{0}$

Solution:-

The expanded form is,
$=(4 \times 100000)+(0 \times 10000)+(5 \times 1000)+(3 \times 100)+(0 \times 10)+(2 \times 1)$
$=400000+0+5000+300+0+2$
$=405302$
(c) $(3 \times 10)^{4}+(7 \times 10)^{2}+(5 \times 10)^{0}$

Solution:-

The expanded form is,
$=(3 \times 10000)+(0 \times 1000)+(7 \times 100)+(0 \times 10)+(5 \times 1)$
$=30000+0+700+0+5$
= 30705
(d) $(9 \times 10)^{5}+(2 \times 10)^{2}+(3 \times 10)^{1}$

Solution:-
The expanded form is,
$=(9 \times 100000)+(0 \times 10000)+(0 \times 1000)+(2 \times 100)+(3 \times 10)+(0 \times 1)$
$=900000+0+0+200+30+0$
$=900230$
3. Express the following numbers in standard form:
(i) $5,00,00,000$

Solution:-
The standard form of the given number is 5×10^{7}
(ii) $70,00,000$

Solution:-

The standard form of the given number is 7×10^{6}
(iii) 3,18,65,00,000

Solution:-
The standard form of the given number is 3.1865×10^{9}
(iv) 3,90,878

Solution:-

The standard form of the given number is 3.90878×10^{5}
(v) 39087.8

Solution:-

The standard form of the given number is 3.90878×10^{4}
(vi) 3908.78

Solution:-

The standard form of the given number is 3.90878×10^{3}
4. Express the number appearing in the following statements in standard form.
(a) The distance between Earth and Moon is $384,000,000 \mathrm{~m}$.

Solution:-

The standard form of the number appearing in the given statement is $3.84 \times 10^{8} \mathrm{~m}$.
(b) Speed of light in a vacuum is $300,000,000 \mathrm{~m} / \mathrm{s}$.

Solution:-

The standard form of the number appearing in the given statement is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
(c) Diameter of the Earth is $1,27,56,000 \mathrm{~m}$.

Solution:-
The standard form of the number appearing in the given statement is $1.2756 \times 10^{\top} \mathrm{m}$.
(d) Diameter of the Sun is $1,400,000,000 \mathrm{~m}$.

Solution:-

The standard form of the number appearing in the given statement is $1.4 \times 10^{\circ} \mathrm{m}$.
(e) In a galaxy, there are, on average, $100,000,000,000$ stars.

Solution:-

The standard form of the number appearing in the given statement is 1×10^{11} stars.
(f) The universe is estimated to be about 12,000,000,000 years old.

Solution:-

The standard form of the number appearing in the given statement is $1.2 \times{ }^{10}{ }^{10}$ years old.
(g) The distance of the Sun from the centre of the Milky Way Galaxy is estimated to be $300,000,000,000,000,000,000 \mathrm{~m}$.

Solution:-

The standard form of the number appearing in the given statement is $3 \times 10^{20} \mathrm{~m}$.
(h) $60,230,000,000,000,000,000,000$ molecules are contained in a drop of water weighing 1.8 gm .

Solution:-

NCERT Solutions for Class 7 Maths Chapter 13 Exponents and Powers

The standard form of the number appearing in the given statement is 6.023×10^{22} molecules.
(i) The Earth has $1,353,000,000$ cubic km of seawater.

Solution:-

The standard form of the number appearing in the given statement is 1.353×10^{9} cubic km .
(j) The population of India was about 1,027,000,000 in March 2001.

Solution:-

The standard form of the number appearing in the given statement is 1.027×10^{9}.

