

EXERCISE 13.1

PAGE: 252

1. Find the value of:

(i) 2⁶

Solution:-

The above value can be written as,

 $= 2 \times 2 \times 2 \times 2 \times 2 \times 2$

= 64

(ii) 9³

Solution:-

The above value can be written as,

 $= 9 \times 9 \times 9$

= 729

(iii) 11²

Solution:-

The above value can be written as,

= 11 × 11

= 121

(iv) 5⁴

Solution:-

The above value can be written as,

 $= 5 \times 5 \times 5 \times 5$

= 625

2. Express the following in exponential form:

(i) 6 × 6 × 6 × 6

Solution:-

The given question can be expressed in the exponential form as 64.

(ii) t × t

Solution:-

The given question can be expressed in the exponential form as t².

(iii) $b \times b \times b \times b$

Solution:-

The given question can be expressed in the exponential form as b⁴.

(iv) 5 × 5 × 7 × 7 × 7

Solution:-

The given question can be expressed in the exponential form as $5^2 \times 7^3$.

(v) 2 × 2 × a × a

Solution:-

The given question can be expressed in the exponential form as $2^2 \times a^2$.

(vi) $a \times a \times a \times c \times c \times c \times c \times d$

Solution:-

The given question can be expressed in the exponential form as $a^3 \times c^4 \times d$.

3. Express each of the following numbers using the exponential notation:

(i) 512

Solution:-

So it can be expressed in the exponential form as 2° .

(ii) 343

Solution:-

The factors of $343 = 7 \times 7 \times 7$

So it can be expressed in the exponential form as 7³.

(iii) 729

Solution:-

The factors of 729 = $3 \times 3 \times 3 \times 3 \times 3 \times 3$

So it can be expressed in the exponential form as 3⁶.

(iv) 3125

Solution:-

The factors of $3125 = 5 \times 5 \times 5 \times 5 \times 5$

So it can be expressed in the exponential form as 5⁵.

4. Identify the greater number, wherever possible, in each of the following.

(i) 4³ or 3⁴

Solution:-

The expansion of $4^3 = 4 \times 4 \times 4 = 64$

The expansion of $3^4 = 3 \times 3 \times 3 \times 3 = 81$

Clearly,

64 < 81

So, 4³ < 3⁴

Hence, 3⁴ is the greater number.

(ii) 5³ or 3⁵

Solution:-

The expansion of $5^3 = 5 \times 5 \times 5 = 125$

The expansion of $3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243$

Clearly,

125 < 243

So, 5³ < 3⁵

Hence, 3⁵ is the greater number.

(iii) 2⁸ or 8²

Solution:-

The expansion of $2^{\circ} = 2 \times 2 = 256$

The expansion of $8^2 = 8 \times 8 = 64$

Clearly,

256 > 64

So, 2⁸ > 8²

Hence, 2[°] is the greater number.

(iv) 100° or 2100

Solution:-

The expansion of $100^2 = 100 \times 100 = 10000$

The expansion of 2¹⁰⁰

Then,

2¹⁰⁰ = 1024 × 1024 × 1024 × 1024 × 1024 × 1024 × 1024 × 1024 × 1024 × 1024 = (1024)¹⁰

Clearly,

100² < 2¹⁰⁰

Hence, 2¹⁰⁰ is the greater number.

(v) 2¹⁰ or 10²

Solution:-

The expansion of $10^2 = 10 \times 10 = 100$

Clearly,

1024 > 100

So, 2¹⁰ > 10²

Hence, 2¹⁰ is the greater number.

5. Express each of the following as a product of powers of their prime factors:

(i) 648

Solution:-

Factors of $648 = 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3$

 $= 2^{3} \times 3^{4}$

(ii) 405

Solution:-

Factors of $405 = 3 \times 3 \times 3 \times 3 \times 5$

 $= 3^4 \times 5$

(iii) 540

Solution:-

Factors of $540 = 2 \times 2 \times 3 \times 3 \times 3 \times 5$

 $= 2^2 \times 3^3 \times 5$

(iv) 3,600

Solution:-

Factors of $3600 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5$

 $= 2^4 \times 3^2 \times 5^2$

6. Simplify:

(i) 2 × 10³

Solution:-

The above question can be written as,

= 2 × 10 × 10 × 10

= 2 × 1000

= 2000

(ii) 7² × 2²

Solution:-

The above question can be written as,

= 49 × 4

= 196

(iii) 2³ × 5

Solution:-

The above question can be written as,

= 2 × 2 × 2 × 5

= 8 × 5

= 40

(iv) 3 × 4⁴

Solution:-

The above question can be written as,

 $= 3 \times 4 \times 4 \times 4 \times 4$

= 3 × 256

= 768

(v) 0 × 10²

Solution:-

The above question can be written as,

= 0 × 10 × 10

= 0 × 100

= 0

(vi) 5² × 3³

Solution:-

The above question can be written as,

 $= 5 \times 5 \times 3 \times 3 \times 3$

= 25 × 27

= 675

(vii) 2⁴ × 3²

Solution:-

The above question can be written as,

 $= 2 \times 2 \times 2 \times 2 \times 3 \times 3$

= 16 × 9

= 144

(viii) 3² × 10⁴

Solution:-

The above question can be written as,

 $= 3 \times 3 \times 10 \times 10 \times 10 \times 10$

= 9 × 10000

= 90000

7. Simplify:

(i) (- 4)³

Solution:-

The expansion of -4³

= $-4 \times -4 \times -4$

= - 64

(ii) $(-3) \times (-2)^3$

Solution:-

The expansion of $(-3) \times (-2)^3$

```
= -3 \times -2 \times -2 \times -2
```

 $= -3 \times -8$

= 24

(iii) $(-3)^2 \times (-5)^2$

Solution:-

The expansion of $(-3)^2 \times (-5)^2$

 $= -3 \times -3 \times -5 \times -5$

= 9 × 25

= 225

(iv) (-2)³ × (-10)³

Solution:-

The expansion of $(-2)^3 \times (-10)^3$

= - 2 × - 2 × - 2 × - 10 × - 10 × - 10

= - 8 × - 1000

```
= 8000
```

8. Compare the following numbers:

(i) 2.7 × 10¹² ; 1.5 × 10⁸

Solution:-

By observing the question

Comparing the exponents of base 10,

Clearly,

2.7 × 10¹² > 1.5 × 10⁸

(ii) 4 × 10¹⁴ ; 3 × 10¹⁷

Solution:-

By observing the question

Comparing the exponents of base 10,

Clearly,

 $4 \times 10^{14} < 3 \times 10^{17}$

EXERCISE 13.2

PAGE: 260

1. Using laws of exponents, simplify and write the answer in exponential form:

(i) $3^2 \times 3^4 \times 3^8$

Solution:-

By the rule of multiplying the powers with the same base = $a^m \times a^n = a^{m+n}$

Then,

 $= (3)^{2+4+8}$

= 314

(ii) 6¹⁵ ÷ 6¹⁰

Solution:-

By the rule of dividing the powers with the same base = $a^{m} \div a^{n} = a^{m-n}$

Then,

= (6)¹⁵⁻¹⁰

= 65

(iii) a³ × a²

Solution:-

By the rule of multiplying the powers with the same base = $a^m \times a^n = a^{m+n}$

Then,

 $= (a)^{3+2}$

= a⁵

(iv) 7^x × 7²

Solution:-

By the rule of multiplying the powers with the same base = $a^m \times a^n = a^{m+n}$

Then,

 $= (7)^{x+2}$

(v) (5²)³ ÷ 5³

Solution:-

By the rule of taking the power of as power = $(a^m)^n = a^{mn}$

```
(5^{2})^{3} can be written as = (5)^{2 \times 3}
```

= 56

Now, $5^6 \div 5^3$

By the rule of dividing the powers with the same base = $a^m \div a^n = a^{m-n}$

Then,

= (5)6-3

(vi) 2^₅ × 5^₅

Solution:-

By the rule of multiplying the powers with the same exponents = $a^m \times b^m = ab^m$

Then,

= (2 × 5)⁵

= 10⁵

(vii) a⁴ × b⁴

Solution:-

By the rule of multiplying the powers with the same exponents = $a^m \times b^m = ab^m$

Then,

= (a × b)4

= ab⁴

(viii) (3⁴)³

Solution:-

By the rule of taking the power of as power = $(a^m)^n = a^{mn}$

```
(3^4)^3 can be written as = (3)^{4 \times 3}
```

= 312

(ix) (2²⁰ ÷ 2¹⁵) × 2³

Solution:-

By the rule of dividing the powers with the same base = $a^m \div a^n = a^{m-n}$

 $(2^{20} \div 2^{15})$ can be simplified as,

= (2)^{20 - 15}

= 2⁵

Then,

By the rule of multiplying the powers with the same base = $a^m \times a^n = a^{m+n}$

 $2^5 \times 2^3$ can be simplified as,

 $= (2)^{5+3}$

= 28

(x) 8^t ÷ 8²

Solution:-

By the rule of dividing the powers with the same base = $a^m \div a^n = a^{m-n}$

Then,

 $= (8)^{t-2}$

2. Simplify and express each of the following in exponential form:

(i) $(2^3 \times 3^4 \times 4)/(3 \times 32)$

Solution:-

```
Factors of 32 = 2 \times 2 \times 2 \times 2 \times 2
```

= 2⁵

Factors of $4 = 2 \times 2$

https://byjus.com

= 5⁸

Then,

 $(25)^4$ can be written as = $(5 \times 5)^4$

 $= (5^2)^4$

 $(5^2)^4$ can be written as = $(5)^{2 \times 4} \dots [::(a^m)^n = a^{mn}]$

(iii) 25⁴ ÷ 5³

Solution:-

= 5³

 $= 5^{10-7} \dots [:a^{m} \div a^{n} = a^{m-n}]$

 $= (5^{6+4}) \div 5^7 \dots [::a^m \times a^n = a^{m+n}]$

 $= 5^{10} \div 5^{7}$

 $= (5^6 \times 5^4) \div 5^7$

Then,

= 56

 $(5^2)^3$ can be written as = $(5)^{2 \times 3} \dots [::(a^m)^n = a^{mn}]$

Solution:-

= 3³

 $= 2^{\circ} \times 3^{\circ}$ $= 1 \times 3^{3}$

(ii) ((5²)³ × 5⁴) ÷ 5⁷

= 2²

Then,

$$= (2^{3+2} \times 3^4) / (3 \times 2^5)$$

$$= (2^{5} \times 3^{4}) / (3 \times 2^{5})$$

$$-(2^{\circ} \times 5^{\circ})/(5 \times 2^{\circ})$$

$$= (2^5 \times 3^4) / (3 \times 2^5)$$

$$= (2^{5} \times 3^{4}) / (3 \times 2^{5})$$

$$= (2^{5} \times 3^{4}) / (3 \times 2^{5})$$

$$= (2^5 \times 3^4) / (3 \times 2^5)$$

$$-(25 \times 24)/(2 \times 25)$$

$$= (2^5 \times 3^4) / (3 \times 2^5)$$

$$= (2^{5} \times 3^{4}) / (3 \times 2^{5})$$

$$= (2^{_{3+2}} \times 3^{_4}) / (3 \times 2^{_5}) \dots [::a^m \times a^n = a^{_{m+n}}]$$

$$= (2^{3+2} \times 3^4) / (3 \times 2^5) \dots [:::]$$

$$= (2^{\circ} \times 3^{\circ}) / (3 \times 2^{\circ})$$

$$= (2^{5} \times 3^{4}) / (3 \times 2^{5})$$

$$= (2^{5} \times 3^{4}) / (3 \times 2^{5})$$

$$= (2^{5} \times 3^{4}) / (3 \times 2^{5})$$

$$= (2^{\circ} \times 3^{\circ}) / (3 \times 2^{\circ})$$

$$= (2^{5} \times 3^{4}) / (3 \times 2^{5})$$

$$= 2^{5-5} \times 3^{4-1} \dots [::a^{m} \div a^{n} = a^{m-n}]$$

$$= (2^{3+2} \times 3^4) / (3 \times 2^5) \dots |$$

 $= (2^3 \times 3^4 \times 2^2)/(3 \times 2^5)$

RBYJU'S

NCERT Solutions for Class 7 Maths Chapter 13 -**Exponents and Powers**


```
= 5<sup>8</sup> ÷ 5<sup>3</sup>
```

```
= 5<sup>8-3</sup> … [∵a<sup>m</sup>÷ a<sup>n</sup> = a<sup>m-n</sup>]
```

= 5⁵

```
(iv) (3 × 7<sup>2</sup> × 11<sup>8</sup>)/ (21 × 11<sup>3</sup>)
```

Solution:-

Factors of $21 = 7 \times 3$

Then,

```
= (3 \times 7^{2} \times 11^{8}) / (7 \times 3 \times 11^{3})
```

 $= 3^{1-1} \times 7^{2-1} \times 11^{8-3}$

 $= 3^{\circ} \times 7 \times 11^{\circ}$

 $= 1 \times 7 \times 11^{5}$

= 7 × 11⁵

(v) $3^7/(3^4 \times 3^3)$

Solution:-

```
= 3^{7}/(3^{4+3}) \dots [:a^{m} \times a^{n} = a^{m+n}]= 3^{7}/3^{7}= 3^{7-7} \dots [:a^{m} \div a^{n} = a^{m-n}]= 3^{0}= 1
```

(vi) 2° + 3° + 4°

Solution:-

= 1 + 1 + 1

(vii) 2° × 3° × 4°

Solution:-

= 1 × 1 × 1

BYJU'S

```
= 1
```

(viii) (3° + 2°) × 5°

Solution:-

 $= (1 + 1) \times 1$

= (2) × 1

= 2

(ix) $(2^{\circ} \times a^{\circ})/(4^{\circ} \times a^{\circ})$

Solution:-

```
(4)^3 can be written as = (2 \times 2)^3
```

= (2²)³

 $(2^2)^{\scriptscriptstyle 3}$ can be written as = $(2)^{_{2\times 3}}$... $[\because (a^m)^n$ = $a^{mn}]$

= 26

Then,

 $= (2^{8} \times a^{5})/(2^{6} \times a^{3})$

```
= 2^{8-6} \times a^{5-3} \dots [\because a^m \div a^n = a^{m-n}]
```

```
= 2^2 \times a^2 \dots [::(a^m)^n = a^{mn}]
```

= 2a²

(x) (a⁵/a³) × a⁸

Solution:-

```
= (a^{5 \cdot 3}) \times a^{8} \dots [\because a^{m} \div a^{n} = a^{m - n}]= a^{2} \times a^{8}= a^{2 + 8} \dots [\because a^{m} \times a^{n} = a^{m + n}]= a^{10}(xi) (4<sup>5</sup> × a<sup>8</sup>b<sup>3</sup>)/ (4<sup>5</sup> × a<sup>5</sup>b<sup>2</sup>)
```

```
Solution:-
```

```
= 4^{5-5} \times (a^{8-5} \times b^{3-2}) \dots [:a^{m} \div a^{n} = a^{m-n}]
```


- $= 4^{\circ} \times (a^{3}b)$
- = 1 × a³b
- = a³b
- (xii) (2³ × 2)²

Solution:-

 $= (2^{3+1})^2 \dots [\because a^m \times a^n = a^{m+n}]$ $= (2^4)^2$

- $(2^4)^2$ can be written as = $(2)^{4 \times 2} \dots [::(a^m)^n = a^{mn}]$
- = 28
- 3. Say true or false and justify your answer:
- (i) 10 × 10¹¹ = 100¹¹

Solution:-

Let us consider Left Hand Side (LHS) = 10 × 10¹¹

- = $10^{1+11} \dots [::a^m \times a^n = a^{m+n}]$
- = 1012

Now, consider Right Hand Side (RHS) = 100¹¹

- $= (10 \times 10)^{11}$
- $= (10^{1+1})^{11}$
- = (10²)¹¹

$$= (10)^{2 \times 11} \dots [::(a^m)^n = a^{mn}]$$

By comparing LHS and RHS,

LHS ≠ RHS

Hence, the given statement is false.

(ii) 2³ > 5²

Solution:-

Let us consider LHS = 2^3

Expansion of $2^3 = 2 \times 2 \times 2$

= 8

Now, consider RHS = 5^2

Expansion of $5^2 = 5 \times 5$

= 25

By comparing LHS and RHS,

LHS < RHS

2³ < 5²

Hence, the given statement is false.

(iii) $2^3 \times 3^2 = 6^5$

Solution:-

Let us consider LHS = $2^3 \times 3^2$

Expansion of $2^3 \times 3^2 = 2 \times 2 \times 2 \times 3 \times 3$

= 72

Now, consider RHS = 6^₅

Expansion of $6^5 = 6 \times 6 \times 6 \times 6 \times 6$

= 7776

By comparing LHS and RHS,

72 ≠ 7776

 $\mathsf{LHS} \neq \mathsf{RHS}$

Hence, the given statement is false.

(iv) 3° = (1000)°

Solution:-

Let us consider LHS = 3°

= 1

Now, consider RHS = 1000°

= 1

By comparing LHS and RHS,

LHS = RHS

3° = 1000°

Hence, the given statement is true.

4. Express each of the following as a product of prime factors only in exponential form:

(i) 108 × 192

Solution:-

The factors of $108 = 2 \times 2 \times 3 \times 3 \times 3$

 $= 2^2 \times 3^3$

The factors of $192 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3$

 $= 2^6 \times 3$

Then,

 $= (2^2 \times 3^3) \times (2^6 \times 3)$

 $= 2^{2+6} \times 3^{3+1} \dots [::a^m \times a^n = a^{m+n}]$

 $= 2^8 \times 3^4$

(ii) 270

Solution:-

The factors of $270 = 2 \times 3 \times 3 \times 3 \times 5$

 $= 2 \times 3^{3} \times 5$

(iii) 729 × 64

The factors of 729 = $3 \times 3 \times 3 \times 3 \times 3 \times 3$

= 36

The factors of $64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$

= 26

Then,

 $= (3^6 \times 2^6)$

 $= 3^6 \times 2^6$

(iv) 768

Solution:-

The factors of 768 = $2 \times 2 \times 3$

= 2⁸ × 3

5. Simplify:

(i) $((2^5)^2 \times 7^3)/(8^3 \times 7)$

Solution:-

 8^{3} can be written as = $(2 \times 2 \times 2)^{3}$

 $= (2^3)^3$

We have,

```
= ((2^{5})^{2} \times 7^{3})/((2^{3})^{3} \times 7)
= (2^{5 \times 2} \times 7^{3})/((2^{3} \times 3 \times 7) \dots [\because (a^{m})^{n} = a^{mn}]
= (2^{10} \times 7^{3})/(2^{9} \times 7)
= (2^{10-9} \times 7^{3-1}) \dots [\because a^{m} \div a^{n} = a^{m-n}]
= 2 \times 7^{2}
= 2 \times 7 \times 7
= 98
(ii) (25 × 5<sup>2</sup> × t<sup>8</sup>)/ (10<sup>3</sup> × t<sup>4</sup>)

Solution:-

25 can be written as = 5 × 5

= 5^{2}
10<sup>3</sup> can be written as = 10<sup>3</sup>

= (5 \times 2)^{3}
```


NCERT Solutions for Class 7 Maths Chapter 13 -Exponents and Powers

 $= 5^3 \times 2^3$

We have,

$$= (5^{2} \times 5^{2} \times t^{8}) / (5^{3} \times 2^{3} \times t^{4})$$

$$= (5^{2+2} \times t^{8}) / (5^{3} \times 2^{3} \times t^{4}) \dots [::a^{m} \times a^{n} = a^{m+n}]$$

$$= (5^4 \times t^8) / (5^3 \times 2^3 \times t^4)$$

$$= (5^{4-3} \times t^{8-4})/2^3 \dots [::a^m \div a^n = a^{m-n}]$$

$$= (5 \times t^4)/(2 \times 2 \times 2)$$

(iii) (3⁵ × 10⁵ × 25)/ (5⁷ × 6⁵)

Solution:-

 10° can be written as = $(5 \times 2)^{\circ}$

= 5⁵ × 2⁵

25 can be written as = 5×5

= 5²

 6° can be written as = $(2 \times 3)^{\circ}$

Then we have,

```
= (3^{5} \times 5^{5} \times 2^{5} \times 5^{2})/(5^{7} \times 2^{5} \times 3^{5})
= (3^{5} \times 5^{5+2} \times 2^{5})/(5^{7} \times 2^{5} \times 3^{5}) \dots [\because a^{m} \times a^{n} = a^{m+n}]
= (3^{5} \times 5^{7} \times 2^{5})/(5^{7} \times 2^{5} \times 3^{5})
= (3^{5-5} \times 5^{7-7} \times 2^{5-5})
= (3^{0} \times 5^{0} \times 2^{0}) \dots [\because a^{m} \div a^{n} = a^{m-n}]
= 1 \times 1 \times 1
= 1
```


EXERCISE 13.3

PAGE: 263

1. Write the following numbers in the expanded forms:

(a) 279404

Solution:-

The expanded form of the number 279404 is,

 $= (2 \times 100000) + (7 \times 10000) + (9 \times 1000) + (4 \times 100) + (0 \times 10) + (4 \times 1)$

Now we can express it using powers of 10 in the exponent form,

 $= (2 \times 10^{5}) + (7 \times 10^{4}) + (9 \times 10^{3}) + (4 \times 10^{2}) + (0 \times 10^{1}) + (4 \times 10^{0})$

(b) 3006194

Solution:-

The expanded form of the number 3006194 is,

 $= (3 \times 1000000) + (0 \times 100000) + (0 \times 10000) + (6 \times 1000) + (1 \times 100) + (9 \times 10) + (4 \times 1)$

Now we can express it using powers of 10 in the exponent form,

 $= (3 \times 10^{6}) + (0 \times 10^{5}) + (0 \times 10^{4}) + (6 \times 10^{3}) + (1 \times 10^{2}) + (9 \times 10^{1}) + (4 \times 10^{0})$

(c) 2806196

Solution:-

The expanded form of the number 2806196 is,

 $= (2 \times 100000) + (8 \times 10000) + (0 \times 10000) + (6 \times 1000) + (1 \times 100) + (9 \times 10) + (6 \times 1)$

Now we can express it using powers of 10 in the exponent form,

 $= (2 \times 10^{\circ}) + (8 \times 10^{\circ}) + (0 \times 10^{4}) + (6 \times 10^{3}) + (1 \times 10^{2}) + (9 \times 10^{1}) + (6 \times 10^{0})$

(d) 120719

Solution:-

The expanded form of the number 120719 is,

$$= (1 \times 100000) + (2 \times 10000) + (0 \times 1000) + (7 \times 100) + (1 \times 10) + (9 \times 1)$$

Now we can express it using powers of 10 in the exponent form,

$$= (1 \times 10^{5}) + (2 \times 10^{4}) + (0 \times 10^{3}) + (7 \times 10^{2}) + (1 \times 10^{1}) + (9 \times 10^{0})$$

(e) 20068

Solution:-

The expanded form of the number 20068 is,

 $= (2 \times 10000) + (0 \times 1000) + (0 \times 100) + (6 \times 10) + (8 \times 1)$

Now we can express it using powers of 10 in the exponent form,

 $= (2 \times 10^4) + (0 \times 10^3) + (0 \times 10^2) + (6 \times 10^1) + (8 \times 10^0)$

2. Find the number from each of the following expanded forms:

(a) $(8 \times 10)^4 + (6 \times 10)^3 + (0 \times 10)^2 + (4 \times 10)^1 + (5 \times 10)^0$

Solution:-

The expanded form is,

 $= (8 \times 10000) + (6 \times 1000) + (0 \times 100) + (4 \times 10) + (5 \times 1)$

= 80000 + 6000 + 0 + 40 + 5

= 86045

(b) $(4 \times 10)^5 + (5 \times 10)^3 + (3 \times 10)^2 + (2 \times 10)^0$

Solution:-

The expanded form is,

$$= (4 \times 100000) + (0 \times 10000) + (5 \times 1000) + (3 \times 100) + (0 \times 10) + (2 \times 1)$$

= 400000 + 0 + 5000 + 300 + 0 + 2

= 405302

(c) $(3 \times 10)^4 + (7 \times 10)^2 + (5 \times 10)^6$

Solution:-

The expanded form is,

 $= (3 \times 10000) + (0 \times 1000) + (7 \times 100) + (0 \times 10) + (5 \times 1)$

- = 30000 + 0 + 700 + 0 + 5
- = 30705
- (d) $(9 \times 10)^{5} + (2 \times 10)^{2} + (3 \times 10)^{1}$

Solution:-

The expanded form is,

- $= (9 \times 100000) + (0 \times 10000) + (0 \times 1000) + (2 \times 100) + (3 \times 10) + (0 \times 1)$
- = 900000 + 0 + 0 + 200 + 30 + 0
- = 900230

3. Express the following numbers in standard form:

(i) 5,00,00,000

Solution:-

The standard form of the given number is 5×10^7

(ii) 70,00,000

Solution:-

The standard form of the given number is 7 × 10⁶

(iii) 3,18,65,00,000

Solution:-

The standard form of the given number is 3.1865 × 10⁹

(iv) 3,90,878

Solution:-

The standard form of the given number is 3.90878 × 10^₅

(v) 39087.8

Solution:-

The standard form of the given number is 3.90878×10^4

(vi) 3908.78

Solution:-

NCERT Solutions for Class 7 Maths Chapter 13 -Exponents and Powers

The standard form of the given number is 3.90878 × 10³

- 4. Express the number appearing in the following statements in standard form.
- (a) The distance between Earth and Moon is 384,000,000 m.

Solution:-

The standard form of the number appearing in the given statement is 3.84 × 10^sm.

(b) Speed of light in a vacuum is 300,000,000 m/s.

Solution:-

The standard form of the number appearing in the given statement is $3 \times 10^{\circ}$ m/s.

(c) Diameter of the Earth is 1,27,56,000 m.

Solution:-

The standard form of the number appearing in the given statement is 1.2756×10^{7} m.

(d) Diameter of the Sun is 1,400,000,000 m.

Solution:-

The standard form of the number appearing in the given statement is 1.4×10^{9} m.

(e) In a galaxy, there are, on average, 100,000,000,000 stars.

Solution:-

The standard form of the number appearing in the given statement is 1×10^{11} stars.

(f) The universe is estimated to be about 12,000,000,000 years old.

Solution:-

The standard form of the number appearing in the given statement is 1.2×10^{10} years old.

(g) The distance of the Sun from the centre of the Milky Way Galaxy is estimated to be 300,000,000,000,000,000 m.

Solution:-

The standard form of the number appearing in the given statement is 3×10^{20} m.

(h) 60,230,000,000,000,000,000 molecules are contained in a drop of water weighing 1.8 gm.

Solution:-

The standard form of the number appearing in the given statement is 6.023×10^{22} molecules.

(i) The Earth has 1,353,000,000 cubic km of seawater.

Solution:-

The standard form of the number appearing in the given statement is 1.353 × 10^o cubic km.

(j) The population of India was about 1,027,000,000 in March 2001.

Solution:-

The standard form of the number appearing in the given statement is $1.027 \times 10^{\circ}$.

