EXERCISE 12.1

1. Evaluate:
(i) $3^{-2}($ iii $)(-4)^{-2}$ (iii) $(1 / 2)^{-5}$

Solution:

(i) $3^{-2}=(1 / 3)^{2}$

$$
\left[\because \quad a^{-m}=\frac{1}{a^{m}}\right]
$$

$=1 / 9$
(ii) $(-4)^{-2}=(1 /-4)^{2}$
$\left[\because \quad a^{-m}=\frac{1}{a^{m}}\right]$
$=1 / 16$
(iii) $(1 / 2)^{-5}=(2 / 1)^{5}$
$\left[\because \quad a^{-m}=\frac{1}{a^{m}}\right]$
$=2^{5}$
$=32$
2. Simplify and express the result in power notation with a positive exponent:
(i) $(-4)^{4} \div(-4)^{8}$
(ii) $\left(1 / 2^{3}\right)^{2}$
(iii) $-(3)^{4} \times(5 / 3)^{4}$
(iv) $\left(3^{-7} \div 3^{-10}\right) \times 3^{-5}$
(v) $2^{-3} \times(-7)^{-3}$

Solution:

(i)

$$
(-4)^{5} \div(-4)^{8}
$$

$=(-4)^{5} /(-4)^{8}$
$\left[\because \quad a^{m} \div a^{n}=a^{m-n}\right]$
$=(-4)^{5.8}$
$=1 /(-4)^{3}$
(ii) $\left(1 / 2^{3}\right)^{2}$
$=1^{2 /}\left(2^{3}\right)^{2}$
$\left[\because\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{a^{n}}\right]$
$=1 / 2^{3 \times 2}=1 / 2^{6}$
$\left[\because\left(a^{m}\right)^{n}=a^{m \times n}\right]$
(iii) $-(3)^{4} \times(5 / 3)^{4}$
$(-3)^{4} \times\left(\frac{5}{3}\right)^{4}=(-3)^{4} \times \frac{5^{4}}{3^{4}}$
$\left[\because\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{a^{n}}\right]$
$=(-1)^{4} \times 3^{4} \times\left(5^{4} / 3^{4}\right)$
$\left[\because(a b)^{m}=a^{m} b^{m}\right]$
$=3^{(44)} \times 5^{4}$
$\left[\because \quad a^{m} \div a^{n}=a^{m-n}\right]$
$=3^{0} \times 5^{4}=5^{4}$
$\left[\because \quad a^{0}=1\right]$
(iv) $\left(3^{-7} \div 3^{-10}\right) \times 3^{-5}$
$=\left(3^{-7 / 3-10}\right) \times 3^{-5}$
$=3^{-7-(-10)} \times 3^{-5}$
$\left[\because \quad a^{m} \div a^{n}=a^{m-n}\right]$
$=3^{(-7+10)} \times 3^{-5}$
$=3^{3} \times 3^{-5}$
$=3^{(3+-5)}$
$\left[\because \quad a^{m} \times a^{n}=a^{m+n}\right]$
$=3^{-2}$
$=1 / 3^{2}$
$\left[\because \quad a^{-m}=\frac{1}{a^{m}}\right]$
(v) $2^{-3} \times(-7)^{-3}$
$=(2 x-7)^{-3}$
(Because $\mathrm{a}^{\mathrm{m}} \times \mathrm{b}^{\mathrm{m}}=(\mathrm{ab})^{\mathrm{m}}$)
$=1 /(2 \times-7)^{3}$
$\left[\because \quad a^{-m}=\frac{1}{a^{m}}\right]$
$=1 /(-14)^{3}$
3. Find the value of:
(i) $\left(3^{0}+4^{-1}\right) \times 2^{2}$
(ii) $\left(2^{-1} \times 4^{-1}\right) \div 2^{-2}$
(iii) $(1 / 2)^{-2}+(1 / 3)^{-2}+(1 / 4)^{-2}$
(iv) $\left(3^{-1}+4^{-1}+5^{-1}\right)^{0}$
(v) $\left\{(-2 / 3)^{-2}\right\}^{2}$

Solution:
(i) $\left(3^{0}+4^{-1}\right) \times 2^{2}=(1+(1 / 4)) \times 2^{2}$
$\left[\because \quad a^{-m}=\frac{1}{a^{m}}\right]$
$=((4+1) / 4) \times 2^{2}$
$=(5 / 4) \times 2^{2}$
$=\left(5 / 2^{2}\right) \times 2^{2}$
$=5 \times 2^{(2-2)}$
$\left[\because \quad a^{m} \div a^{n}=a^{m-n}\right]$
$=5 \times 2^{0}$
$=5 \times 1=5$
$\left[\because \quad a^{-m}=\frac{1}{a^{m}}\right]$
(ii) $\left(2^{-1} \times 4^{-1}\right) \div 2^{-2}$
$=[(1 / 2) \times(1 / 4)] \div(1 / 4)$
$\left[\because \quad a^{-m}=\frac{1}{a^{m}}\right]$
$=\left(1 / 2 \times 1 / 2^{2}\right) \div 1 / 4$
$=1 / 2^{3} \div 1 / 4$
$=(1 / 8) \times(4)$
$=1 / 2$
(iii) $(1 / 2)^{-2}+(1 / 3)^{-2}+(1 / 4)^{-2}$
$=\left(2^{-1}\right)^{-2}+\left(3^{-1}\right)^{-2}+\left(4^{-1}\right)^{-2}$
$\left[\because \quad a^{-m}=\frac{1}{a^{m}}\right]$
$=2^{(-1 x-2)}+3^{(-1 x-2)}+4^{(-1 x-2)}$
$\left[\because\left(a^{m}\right)^{n}=a^{m \times n}\right]$
$=2^{2}+3^{2}+4^{2}$
$=4+9+16$
$=29$
(iv) $\left(3^{-1}+4^{-1}+5^{-1}\right)^{0}$
$=1$
$\left[\because a^{0}=1\right]$
(v) $\left\{(-2 / 3)^{-2}\right\}^{2}=(-2 / 3)^{-2 \times 2}$
$\left[\because\left(a^{m}\right)^{n}=a^{m \times n}\right]$
$=(-2 / 3)^{4}$
$=(-3 / 2)^{4}$
$\left[\because \quad a^{-m}=\frac{1}{a^{m}}\right]$
$=81 / 16$
4. Evaluate:
(i) $\left(8^{-1} \times 5^{3}\right) / 2^{-4}$
(ii) $\left(5^{-1} \times 2^{-2}\right) \times 6^{-1}$

Solution:
(i) $\left(8^{-1} \times 5^{3}\right) / 2^{-4}$
$\frac{8^{-1} \times 5^{3}}{2^{-4}}=\frac{\left(2^{3}\right)^{-1} \times 5^{3}}{2^{-4}}=\frac{2^{-3} \times 5^{3}}{2^{-4}}$
$\left[\because\left(a^{m}\right)^{n}=a^{m \times n}\right]$
=
$2^{-3-(-4)} \times 5^{3}=2^{-3+4} \times 5^{3}$
$\left[\because \quad a^{m} \div a^{n}=a^{m-n}\right]$
$=2 \times 125=250$
(ii) $\left(5^{-1} \times 2^{-2}\right) \times 6^{-1}$
$\left(5^{-1} \times 2^{-1}\right) \times 6^{-1}=\left(\frac{1}{5} \times \frac{1}{2}\right) \times \frac{1}{6}$
$\left[\because \quad a^{-m}=\frac{1}{a^{m}}\right]$
$=(1 / 10) \times 1 / 6$
$=1 / 60$
5. Find the value of m for which $5^{m} \div 5^{-3}=5^{5}$

Solution:
$5^{m} \div 5^{3}=5^{5}$
$5^{(m-3)}=5^{5}$
$\left[\because \quad a^{m} \div a^{n}=a^{m-n}\right]$
$5^{m+3}=5^{5}$
Comparing exponents on both sides, we get
$m+3=5$
$\mathrm{m}=5-3$
$\mathrm{m}=2$
6. Evaluate:
(i)
$\left\{\left(\frac{1}{3}\right)^{-1}-\left(\frac{1}{4}\right)^{-1}\right\}^{-1}$
(ii)
$\left(\frac{5}{8}\right)^{-7} \times\left(\frac{8}{5}\right)^{-4}$

Solution:

(i)
$\left\{\left(\frac{1}{3}\right)^{-1}-\left(\frac{1}{4}\right)^{-1}\right\}=\left\{\left(\frac{3}{1}\right)^{1}-\left(\frac{4}{1}\right)^{1}\right\}$
$\left[\because a^{-m}=\frac{1}{a^{m}}\right]$
$=3-4$
$=-1$
(ii)

$$
\begin{aligned}
& \left(\frac{5}{8}\right)^{-7} \times\left(\frac{8}{5}\right)^{-4}=\frac{5^{-7}}{8^{-7}} \times \frac{8^{-4}}{5^{-4}} \\
& {\left[\because\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}\right]} \\
& = \\
& 5^{-7-(-4)} \times 8^{-4-(-7)} \\
& {\left[\because a^{m} \div a^{n}=a^{m-n}\right]} \\
& =5^{-7+4} \times 8^{-4+7} \\
& =5^{-3} \times 8^{3}= \\
& \frac{8^{3}}{5^{3}} \\
& {\left[\because a^{-m}=\frac{1}{a^{m}}\right]} \\
& =512 / 125
\end{aligned}
$$

7. Simplify the following:
(i)

$$
\frac{25 \times t^{-4}}{5^{-3} \times 10 \times t^{-8}} \quad(t \neq 0)
$$

(ii)
$\frac{3^{-5} \times 10^{-5} \times 125}{5^{-7} \times 6^{-5}}$

Solution:

(i)

$$
\begin{aligned}
& \frac{25 \times t^{-4}}{5^{-3} \times 10 \times t^{-8}} \\
& =\frac{5^{2} \times t^{-4}}{5^{-3} \times 5 \times 2 \times t^{-8}} \\
& =\frac{5^{2-(-3)-1} \times t^{-4-(-8)}}{2}
\end{aligned}
$$

$$
\left[\because \quad a^{m} \div a^{n}=a^{m-n}\right]
$$

$$
\frac{5^{2+3-1} \times t^{-4+8}}{2}=\frac{5^{4} \times t^{4}}{2}=
$$

$$
\frac{625}{2} t^{4}
$$

(ii)

$$
\begin{aligned}
& \frac{3^{-5} \times 10^{-5} \times 125}{5^{-7} \times 6^{-5}} \\
& =\frac{3^{-5} \times(2 \times 5)^{-5} \times 5^{3}}{5^{-7} \times(2 \times 3)^{-5}} \\
& =\frac{3^{-5} \times 2^{-5} \times 5^{-5} \times 5^{3}}{5^{-7} \times 2^{-5} \times 3^{-5}} \\
& {\left[\because(a b)^{m}=a^{m} b^{m}\right]} \\
& = \\
& \frac{3^{-5} \times 2^{-5} \times 5^{-5+3}}{5^{-7} \times 2^{-5} \times 3^{-5}=\frac{3^{-5} \times 2^{-5} \times 5^{-2}}{5^{-7} \times 2^{-5} \times 3^{-5}}} \\
& {\left[\because a^{m} \times a^{n}=a^{m+n}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& = \\
& 3^{-5-(-5)} \times 2^{-5-(-5)} \times 5^{-2-(-7)} \\
& {\left[\because a^{m} \div a^{n}=a^{m-n}\right]} \\
& = \\
& 3^{-5+5} \times 2^{-5+5} \times 5^{-2+7}= \\
& 3^{0} \times 2^{0} \times 5^{5} \\
& =1 \times 1 \times 3125 \\
& {\left[\because a^{0}=1\right]} \\
& =3125
\end{aligned}
$$

