EXERCISE 12.2

1. Express the following numbers in standard form.
(i) $\mathbf{0 . 0 0 0 0 0 0 0 0 0 0 0 0 8 5}$
(ii) 0.00000000000942
(iii) 6020000000000000
(iv) $\mathbf{0 . 0 0 0 0 0 0 0 0 8 3 7}$
(v) 31860000000

Solution:

(i) $0.0000000000085=0.0000000000085 \times\left(10^{12} / 10^{12}\right)=8.5 \times 10^{-12}$
(ii) $0.00000000000942=0.00000000000942 \times\left(10^{12} / 10^{12}\right)=9.42 \times 10^{-12}$
(iii) $6020000000000000=6020000000000000 \times\left(10^{15} / 10^{15}\right)=6.02 \times 10^{15}$
(iv) $0.00000000837=0.00000000837 \times\left(10^{9} / 10^{9}\right)=8.37 \times 10^{-9}$
(v) $31860000000=31860000000 \times\left(10^{10} / 10^{10}\right)=3.186 \times 10^{10}$
2. Express the following numbers in the usual form.
(i) 3.02×10^{-6}
(ii) 4.5×10^{4}
(iii) 3×10^{-8}
(iv) 1.0001×10^{9}
(v) 5.8×10^{12}
(vi) 3.61492×10^{6}

Solution:

(i) $3.02 \times 10^{-6}=3.02 / 10^{6}=0.00000302$
(ii) $4.5 \times 10^{4}=4.5 \times 10000=45000$
(iii) $3 \times 10^{-8}=3 / 10^{8}=0.00000003$
(iv) $1.0001 \times 10^{9}=1000100000$
(v) $5.8 \times 10^{12}=5.8 \times 1000000000000=5800000000000$
(vi) $3.61492 \times 10^{6}=3.61492 \times 1000000=3614920$
3. Express the number appearing in the following statements in standard form.
(i) 1 micron is equal to $1 / 1000000 \mathrm{~m}$.
(ii) Charge of an electron is $\mathbf{0 . 0 0 0}, \mathbf{0 0 0}, 000,000,000,000,16$ coulomb.
(iii) Size of bacteria is $\mathbf{0 . 0 0 0 0 0 0 5} \mathbf{~ m}$
(iv) Size of a plant cell is 0.00001275 m
(v) Thickness of a thick paper is $\mathbf{0 . 0 7} \mathbf{~ m m}$

Solution:
(i) 1 micron $=\mathbf{1} / 1000000$
$=1 / 10^{6}$
$=1 \times 10^{-6}$
(ii) Charge of an electron is $\mathbf{0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6}$ coulombs
$=0.00000000000000000016 \times 10^{19} / 10^{19}$
$=1.6 \times 10^{-19}$ coulomb
(iii) Size of bacteria $=\mathbf{0 . 0 0 0 0 0 0 5}$
$=5 / 10000000=5 / 10^{7}=5 \times 10^{-7} \mathrm{~m}$
(iv) Size of a plant cell is $\mathbf{0 . 0 0 0 0 1 2 7 5} \mathbf{~ m}$
$=0.00001275 \times 10^{5} / 10^{5}$
$=1.275 \times 10^{-5} \mathrm{~m}$
(v) Thickness of a thick paper $=0.07 \mathbf{~ m m}$
$0.07 \mathrm{~mm}=7 / 100 \mathrm{~mm}=7 / 10^{2}=7 \times 10^{-2} \mathrm{~mm}$
4. In a stack, there are 5 books, each having a thickness of 20 mm and 5 paper sheets, each having a thickness of 0.016 mm . What is the total thickness of the stack?

Solution:
Thickness of one book $=20 \mathrm{~mm}$
Thickness of 5 books $=20 \times 5=100 \mathrm{~mm}$
Thickness of one paper $=0.016 \mathrm{~mm}$
Thickness of 5 papers $=0.016 \times 5=0.08 \mathrm{~mm}$
Total thickness of a stack $=100+0.08=100.08 \mathrm{~mm}$
$=100.08 \times 10^{2} / 10^{2} \mathrm{~mm}$
$=1.0008 \times 10^{2} \mathrm{~mm}$

