EXERCISE 13.1

1. The following are the car parking charges near a railway station up to,

4 hours - Rs. 60
8 hours - Rs. 100

12 hours - Rs. 140
24 hours - Rs. 180

Check if the parking charges are in direct proportion to the parking time.

Solution:

Charges per hour:
$\mathrm{C} 1=60 / 4=$ Rs. 15
$\mathrm{C} 2=100 / 8=$ Rs. 12.50
$C 3=140 / 12=$ Rs. 11.67
$\mathrm{C} 4=180 / 24=$ Rs. 7.50
Here, the charges per hour are not the same, i.e. $\mathrm{C} 1 \neq \mathrm{C} 2 \neq \mathrm{C} 3 \neq \mathrm{C} 4$
Therefore, the parking charges are not in direct proportion to the parking time.
2. A mixture of paint is prepared by mixing 1 part of red pigments with 8 parts of the base. In the following table, find the parts of the base that need to be added.

Parts of red pigment	1	4	7	12	20
Parts of base	8	\ldots	\ldots	\cdots	$\ldots-$

Solution:
Let the ratio of parts of red pigment and parts of the base be a / b.
Case 1: Here, $a_{1}=1, b_{1}=8$

$$
\mathrm{a}_{1} / \mathrm{b}_{1}=1 / 8=\mathrm{k} \text { (say) }
$$

Case 2: When $\mathrm{a}_{2}=4, \mathrm{~b}_{2}=$?
$k=\frac{a_{2}}{b_{2}}$
$\mathrm{b}_{2}=\mathrm{a}_{2} / \mathrm{k}=4 /(1 / 8)=4 \times 8=32$
Case 3: When $\mathrm{a}_{3}=7, \mathrm{~b}_{3}=$?
$k=\frac{a_{3}}{b_{3}}$
$\mathrm{b}_{3}=\mathrm{a}_{3} / \mathrm{k}=7 /(1 / 8)=7 \times 8=56$
Case 4: When $\mathrm{a}_{4}=12, \mathrm{~b}_{4}=$?
$k=\frac{a_{4}}{b_{4}}$
$\mathrm{b}_{4}=\mathrm{a}_{4} / \mathrm{k}=12 /(1 / 8)=12 \times 8=96$
Case 5: When $a_{5}=20, b_{5}=$?
$k=\frac{a_{5}}{b_{5}}$
$\mathrm{b}_{5}=\mathrm{a}_{5} / \mathrm{k}=20 /(1 / 8)=20 \times 8=160$
When combining results for all the cases, we get

Parts of red pigment	1	4	7	12	20
Parts of base	8	32	56	96	160

3. In Question 2 above, if 1 part of a red pigment requires 75 mL of the base, how much red pigment should we mix with 1800 mL of the base?

Solution:

Let the parts of red pigment mix with 1800 mL base be x .

Parts of red pigment	1	x
Parts of base	75	1800

Since it is in direct proportion,

$$
\frac{1}{75}=\frac{x}{1800}
$$

$$
\begin{aligned}
& \Rightarrow \\
& 75 \times x=1 \times 1800 \\
& x=\frac{1 \times 1800}{75}=24
\end{aligned}
$$

Hence, with the base $1800 \mathrm{~mL}, 24$ parts of the red pigment should be mixed.
4. A machine in a soft drink factory fills $\mathbf{8 4 0}$ bottles in six hours. How many bottles will it fill in five hours?

Solution:

Let the number of bottles filled in five hours be x .
Here, the ratio of hours and bottles is in direct proportion.

$$
\frac{6}{840}=\frac{5}{x}
$$

$6 \mathrm{x}=5 \times 840$
$x=5 \times 840 / 6=700$
Hence, the machine will fill 700 bottles in five hours.
5. A photograph of a bacteria enlarged 50,000 times attains a length of 5 cm , as shown in the diagram. What is the actual length of the bacteria? If the photograph is enlarged 20,000 times only, what would be its enlarged length?

Solution:

Let the enlarged length of bacteria be x .
Actual length of bacteria $=5 / 50000=1 / 10000 \mathrm{~cm}=10^{-4} \mathrm{~cm}$

Length	5	x
Enlarged length	50,000	20,000

Here, the length and enlarged length of bacteria are in direct proportion.
$\frac{5}{50000}=\frac{x}{20000}$
\Rightarrow
$x \times 50000=5 \times 20000$
$x=\frac{5 \times 20000}{50000}$
$\mathrm{x}=2 \mathrm{~cm}$
Hence, the enlarged length of bacteria is 2 cm .
6. In a model of a ship, the mast is 9 cm high, while the mast of the actual ship is 12 m high. If the length of the ship is 28 m , how long is the model ship?

Solution:

Let the length of the model ship be x .

Length of actual ship (in m)	12	28
Length of model ship (in cm)	9	x

Here, the length of the mast and the actual length of the ship are in direct proportion.
$\frac{12}{9}=\frac{28}{x}$
\Rightarrow
$x \times 12=28 \times 9$
$x=\frac{28 \times 9}{12}$
$\mathrm{x}=21 \mathrm{~cm}$
Hence, the length of the model ship is 21 cm .
7. Suppose 2 kg of sugar contains 9×10^{6} crystals. How many sugar crystals are there in
(i) 5 kg of sugar? (ii) 1.2 kg of sugar?

Solution:
(i) Let sugar crystals be x .

Weight of sugar (in kg)	2	5
No. of crystals	9×10^{6}	x

Here, the weight of sugar and the number of crystals are in direct proportion.

$$
\begin{aligned}
& \frac{2}{9 \times 10^{6}}=\frac{5}{x} \\
& \Rightarrow \\
& x \times 2=5 \times 9 \times 10^{6} \\
& x=\frac{5 \times 9 \times 10^{6}}{2} \\
& = \\
& 22.5 \times 10^{6}=2.25 \times 10^{7}
\end{aligned}
$$

Hence, the number of sugar crystals is 2.25×10^{7}.
(ii) Let sugar crystals be x .

Here, the weight of sugar and the number of crystals are in direct proportion.

Weight of sugar (in kg)	2	1.2
No. of crystals	9×10^{6}	x

$$
\begin{aligned}
& \frac{2}{9 \times 10^{6}}=\frac{1.2}{x} \\
& \Rightarrow \\
& x \times 2=1.2 \times 9 \times 10^{6} \\
& x=\frac{1.2 \times 9 \times 10^{6}}{2} \\
& = \\
& 0.6 \times 9 \times 10^{6}=5.4 \times 10^{6}
\end{aligned}
$$

Hence, the number of sugar crystals is 5.4×10^{6}.
8. Rashmi has a road map with a scale of 1 cm representing 18 km . She drives on the road for 72 km . What would be her distance covered on the map?

Solution:

Let the distance covered in the map be x.

Actual distance (in km$)$	18	72
Distance covered in map (in cm)	1	x

Here, the actual distance and distance covered in the map are in direct proportion.

$$
\frac{18}{1}=\frac{72}{x}
$$

$$
\Rightarrow
$$

$$
x \times 18=72 \times 1
$$

$x=\frac{72 \times 1}{18}$
$\mathrm{x}=4 \mathrm{~cm}$
Hence, the distance covered on the map is 4 cm .
9. A 5 m 60 cm high vertical pole casts a shadow 3 m 20 cm long. Find at the same time (i) the length of the shadow cast by another pole 10 m 50 cm high (ii) the height of a pole which casts a shadow 5 m long.

Solution:

Here, the height of the pole and the length of the shadow are in direct proportion.
And $1 \mathrm{~m}=100 \mathrm{~cm}$
$5 \mathrm{~m} 60 \mathrm{~cm}=5 \times 100+60=560 \mathrm{~cm}$
$3 \mathrm{~m} 20 \mathrm{~cm}=3 \times 100+20=320 \mathrm{~cm}$
$10 \mathrm{~m} 50 \mathrm{~cm}=10 \times 100+50=1050 \mathrm{~cm}$
$5 \mathrm{~m}=5 \times 100=500 \mathrm{~cm}$
(i) Let the length of the shadow of another pole be x .

Height of pole (in cm)	560	1050
Length of shadow (in cm)	320	x

$\frac{560}{320}=\frac{1050}{x}$
\Rightarrow
$x \times 560=1050 \times 320$
$x=\frac{1050 \times 320}{560}$
$x=600 \mathrm{~cm}=6 \mathrm{~m}$
Hence, the length of the shadow of another pole is 6 m .
(ii) Let the height of the pole be x .

Height of pole (in cm)	560	x
Length of shadow (in cm)	320	500

$$
\begin{aligned}
& \frac{560}{320}=\frac{x}{500} \\
& \Rightarrow \\
& x \times 320=560 \times 500 \\
& x=\frac{560 \times 500}{320} \\
& =875 \mathrm{~cm}=8 \mathrm{~m} 75 \mathrm{~cm}
\end{aligned}
$$

Hence, the height of the pole is 8 m 75 cm .
10. A loaded truck travels 14 km in 25 minutes. If the speed remains the same, how far can it travel in 5 hours?

Solution:

Let the distance covered in 5 hours be x km .
1 hour $=60$ minutes
Therefore, 5 hours $=5 \times 60=300$ minutes

Distance (in km)	14	x
Time (in minutes)	25	300

Here, the distance covered and time are in direct proportion.
$\frac{14}{25}=\frac{x}{300}$
$\Rightarrow 25 \mathrm{x}=300(14)$
$x=\frac{14 \times 300}{25}$
$x=168$
Therefore, the truck can travel 168 km in 5 hours.

