EXERCISE 14.2

1. Factorise the following expressions.
(i) $a^{2}+8 a+16$
(ii) $\mathrm{p}^{2}-10 \mathrm{p}+25$
(iii) $\mathbf{2 5} \mathrm{m}^{2}+\mathbf{3 0 m}+\mathbf{9}$
(iv) $\mathbf{4 9} \mathrm{y}^{2}+84 \mathrm{yz}+36 \mathrm{z}^{2}$
(v) $4 x^{2}-8 x+4$
(vi) $121 b^{2}-88 b c+16 c^{2}$
(vii) $(1+m)^{2}-4 \operatorname{lm}(H i n t: \text { Expand (} 1+m)^{2}$ first)
(viii) $a^{4}+2 a^{2} b^{2}+b^{4}$

Solution:
(i) $a^{2}+8 a+16$
$=\mathrm{a}^{2}+2 \times 4 \times a+4^{2}$
$=(a+4)^{2}$
Using the identity $(\mathrm{x}+\mathrm{y})^{2}=\mathrm{x}^{2}+2 \mathrm{xy}+\mathrm{y}^{2}$
(ii) $\mathrm{p}^{2}-10 \mathrm{p}+25$
$=\mathrm{p}^{2}-2 \times 5 \times \mathrm{p}+5^{2}$
$=(\mathrm{p}-5)^{2}$
Using the identity $(x-y)^{2}=x^{2}-2 x y+y^{2}$
(iii) $25 m^{2}+30 m+9$
$=(5 \mathrm{~m})^{2}+2 \times 5 \mathrm{~m} \times 3+3^{2}$
$=(5 m+3)^{2}$
Using the identity $(\mathrm{x}+\mathrm{y})^{2}=\mathrm{x}^{2}+2 \mathrm{xy}+\mathrm{y}^{2}$
(iv) $49 y^{2}+84 y z+36 z^{2}$
$=(7 y)^{2}+2 \times 7 y \times 6 z+(6 z)^{2}$
$=(7 y+6 z)^{2}$

Using the identity $(x+y)^{2}=x^{2}+2 x y+y^{2}$
(v) $4 x^{2}-8 x+4$
$=(2 \mathrm{x})^{2}-2 \times 4 \mathrm{x}+2^{2}$
$=(2 \mathrm{x}-2)^{2}$
Using the identity $(x-y)^{2}=x^{2}-2 x y+y^{2}$
(vi) $121 b^{2}-88 b c+16 c^{2}$
$=(11 b)^{2}-2 \times 11 b \times 4 c+(4 c)^{2}$
$=(11 \mathrm{~b}-4 \mathrm{c})^{2}$
Using the identity $(x-y)^{2}=x^{2}-2 x y+y^{2}$
(vii) $(1+m)^{2}-41 m$ (Hint: Expand (l+m) ${ }^{2}$ first)

Expand $(1+m)^{2}$ using the identity $(x+y)^{2}=x^{2}+2 x y+y^{2}$
$(1+m)^{2}-41 m=l^{2}+m^{2}+2 l m-41 m$
$=l^{2}+m^{2}-2 l m$
$=(1-\mathrm{m})^{2}$
Using the identity $(x-y)^{2}=x^{2}-2 x y+y^{2}$
(viii) $a^{4}+2 a^{2} b^{2}+b^{4}$
$=\left(a^{2}\right)^{2}+2 \times a^{2} \times b^{2}+\left(b^{2}\right)^{2}$
$=\left(a^{2}+b^{2}\right)^{2}$
Using the identity $(x+y)^{2}=x^{2}+2 x y+y^{2}$
2. Factorise.
(i) $4 \mathbf{p}^{2}-9 \mathbf{q}^{2}$
(ii) $63 a^{2}-112 b^{2}$
(iii) $49 \mathrm{x}^{2}-36$
(iv) $16 x^{5}-144 x^{3}$ differ
(v) $(\mathbf{l}+\mathrm{m})^{2}-(\mathrm{l}-\mathrm{m})^{2}$
(vi) $9 x^{2} y^{2}-16$
(vii) $\left(\mathrm{x}^{2}-2 \mathrm{xy}+\mathrm{y}^{2}\right)-\mathbf{z}^{2}$
(viii) $\mathbf{2 5} a^{2}-4 b^{2}+28 b c-49 c^{2}$

Solution:

(i) $4 p^{2}-9 q^{2}$
$=(2 \mathrm{p})^{2}-(3 \mathrm{q})^{2}$
$=(2 p-3 q)(2 p+3 q)$
Using the identity $\mathrm{x}^{2}-\mathrm{y}^{2}=(\mathrm{x}+\mathrm{y})(\mathrm{x}-\mathrm{y})$
(ii) $63 a^{2}-112 b^{2}$
$=7\left(9 a^{2}-16 b^{2}\right)$
$=7\left((3 \mathrm{a})^{2}-(4 \mathrm{~b})^{2}\right)$
$=7(3 a+4 b)(3 a-4 b)$
Using the identity $\mathrm{x}^{2}-\mathrm{y}^{2}=(\mathrm{x}+\mathrm{y})(\mathrm{x}-\mathrm{y})$
(iii) $49 x^{2}-36$
$=(7 \mathrm{x})^{2}-6^{2}$
$=(7 \mathrm{x}+6)(7 \mathrm{x}-6)$
Using the identity $\mathrm{x}^{2}-\mathrm{y}^{2}=(\mathrm{x}+\mathrm{y})(\mathrm{x}-\mathrm{y})$
(iv) $16 x^{5}-144 x^{3}$
$=16 \mathrm{x}^{3}\left(\mathrm{x}^{2}-9\right)$
$=16 x^{3}\left(x^{2}-9\right)$
$=16 \mathrm{x}^{3}(\mathrm{x}-3)(\mathrm{x}+3)$
Using the identity $\mathrm{x}^{2}-\mathrm{y}^{2}=(\mathrm{x}+\mathrm{y})(\mathrm{x}-\mathrm{y})$
(v) $(1+m)^{2}-(1-m)^{2}$
$=\{(1+\mathrm{m})-(1-\mathrm{m})\}\{(1+\mathrm{m})+(1-\mathrm{m})\}$
Using the identity $\mathrm{x}^{2}-\mathrm{y}^{2}=(\mathrm{x}+\mathrm{y})(\mathrm{x}-\mathrm{y})$
$=(1+\mathrm{m}-\mathrm{l}+\mathrm{m})(1+\mathrm{m}+\mathrm{l}-\mathrm{m})$
$=(2 \mathrm{~m})(2 \mathrm{l})$
$=4 \mathrm{ml}$
(vi) $9 x^{2} y^{2}-16$
$=(3 x y)^{2}-4^{2}$
$=(3 x y-4)(3 x y+4)$
Using the identity $\mathrm{x}^{2}-\mathrm{y}^{2}=(\mathrm{x}+\mathrm{y})(\mathrm{x}-\mathrm{y})$
(vii) $\left(x^{2}-2 x y+y^{2}\right)-z^{2}$
$=(\mathrm{x}-\mathrm{y})^{2}-\mathrm{Z}^{2}$
Using the identity $(x-y)^{2}=x^{2}-2 x y+y^{2}$
$=\{(\mathrm{x}-\mathrm{y})-\mathrm{z}\}\{(\mathrm{x}-\mathrm{y})+\mathrm{z}\}$
$=(\mathrm{x}-\mathrm{y}-\mathrm{z})(\mathrm{x}-\mathrm{y}+\mathrm{z})$
Using the identity $x^{2}-y^{2}=(x+y)(x-y)$
(viii) $25 a^{2}-4 b^{2}+28 b c-49 c^{2}$
$=25 \mathrm{a}^{2}-\left(4 \mathrm{~b}^{2}-28 \mathrm{bc}+49 \mathrm{c}^{2}\right)$
$=(5 a)^{2}-\left\{(2 b)^{2}-2(2 b)(7 c)+(7 c)^{2}\right\}$
$=(5 a)^{2}-(2 b-7 c)^{2}$
Using the identity $x^{2}-y^{2}=(x+y)(x-y)$, we have
$=(5 \mathrm{a}+2 \mathrm{~b}-7 \mathrm{c})(5 \mathrm{a}-2 \mathrm{~b}+7 \mathrm{c})$
3. Factorise the expressions.
(i) $\mathbf{a x ^ { 2 }}+\mathbf{b x}$
(ii) $\mathbf{7} \mathbf{p}^{2}+\mathbf{2 1} \mathbf{q}^{2}$
(iii) $2 \mathrm{x}^{3}+2 \mathrm{xy}^{2}+2 \mathrm{xz}^{2}$
(iv) $\mathbf{a m}^{2}+\mathbf{b m}^{2}+\mathbf{b n}^{2}+\mathbf{a n}^{2}$
(v) $(\mathbf{l m}+\mathbf{l})+\mathbf{m}+\mathbf{1}$
(vi) $\mathbf{y}(\mathrm{y}+\mathrm{z})+9(\mathrm{y}+\mathrm{z})$
(vii) $5 y^{2}-20 y-8 z+2 y z$
(viii) $10 a b+4 a+5 b+2$
(ix) $6 x y-4 y+6-9 x$

Solution:

(i) $a x^{2}+b x=x(a x+b)$
(ii) $7 \mathrm{p}^{2}+21 \mathrm{q}^{2}=7\left(\mathrm{p}^{2}+3 \mathrm{q}^{2}\right)$
(iii) $2 x^{3}+2 x y^{2}+2 x z^{2}=2 x\left(x^{2}+y^{2}+z^{2}\right)$
(iv) $a m^{2}+b m^{2}+b n^{2}+a n^{2}=m^{2}(a+b)+n^{2}(a+b)=(a+b)\left(m^{2}+n^{2}\right)$
(v) $(\mathrm{lm}+1)+\mathrm{m}+1=1 \mathrm{~m}+\mathrm{m}+1+1=\mathrm{m}(1+1)+(1+1)=(m+1)(1+1)$
(vi) $y(y+z)+9(y+z)=(y+9)(y+z)$
(vii) $5 y^{2}-20 y-8 z+2 y z=5 y(y-4)+2 z(y-4)=(y-4)(5 y+2 z)$
(viii) $10 \mathrm{ab}+4 \mathrm{a}+5 \mathrm{~b}+2=5 \mathrm{~b}(2 \mathrm{a}+1)+2(2 \mathrm{a}+1)=(2 \mathrm{a}+1)(5 \mathrm{~b}+2)$
(ix) $6 x y-4 y+6-9 x=6 x y-9 x-4 y+6=3 x(2 y-3)-2(2 y-3)=(2 y-3)(3 x-2)$
4.Factorise.
(i) $\mathbf{a}^{4}-\mathbf{b}^{4}$
(ii) $\mathrm{p}^{4}-81$
(iii) $\mathbf{x}^{4}-(\mathbf{y}+\mathrm{z})^{4}$
(iv) $\mathbf{x}^{4}-(\mathbf{x}-\mathbf{z})^{4}$
(v) $\mathbf{a}^{4}-2 \mathbf{a}^{2} \mathbf{b}^{2}+\mathbf{b}^{4}$

Solution:

(i) $a^{4}-b^{4}$
$=\left(a^{2}\right)^{2}-\left(b^{2}\right)^{2}$
$=\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)$
$=(a-b)(a+b)\left(a^{2}+b^{2}\right)$
(ii) $\mathrm{p}^{4}-81$
$=\left(p^{2}\right)^{2}-(9)^{2}$
$=\left(p^{2}-9\right)\left(\mathrm{p}^{2}+9\right)$
$=\left(\mathrm{p}^{2}-3^{2}\right)\left(\mathrm{p}^{2}+9\right)$
$=(p-3)(p+3)\left(p^{2}+9\right)$
(iii) $x^{4}-(y+z)^{4}=\left(x^{2}\right)^{2}-\left[(y+z)^{2}\right]^{2}$
$=\left\{\mathrm{x}^{2}-(\mathrm{y}+\mathrm{z})^{2}\right\}\left\{\mathrm{x}^{2}+(\mathrm{y}+\mathrm{z})^{2}\right\}$
$=\left\{\left(\mathrm{x}-(\mathrm{y}+\mathrm{z})(\mathrm{x}+(\mathrm{y}+\mathrm{z})\}\left\{\mathrm{x}^{2}+(\mathrm{y}+\mathrm{z})^{2}\right\}\right.\right.$
$=(\mathrm{x}-\mathrm{y}-\mathrm{z})(\mathrm{x}+\mathrm{y}+\mathrm{z})\left\{\mathrm{x}^{2}+(\mathrm{y}+\mathrm{z})^{2}\right\}$
(iv) $\mathrm{x}^{4}-(\mathrm{x}-\mathrm{z})^{4}=\left(\mathrm{x}^{2}\right)^{2}-\left\{(\mathrm{x}-\mathrm{z})^{2}\right\}^{2}$
$=\left\{\mathrm{X}^{2}-(\mathrm{x}-\mathrm{Z})^{2}\right\}\left\{\mathrm{X}^{2}+(\mathrm{x}-\mathrm{Z})^{2}\right\}$
$=\{\mathrm{x}-(\mathrm{x}-\mathrm{z})\}\{\mathrm{x}+(\mathrm{x}-\mathrm{z})\}\left\{\mathrm{x}^{2}+(\mathrm{x}-\mathrm{z})^{2}\right\}$
$=\mathrm{z}(2 \mathrm{x}-\mathrm{z})\left(\mathrm{X}^{2}+\mathrm{X}^{2}-2 \mathrm{xz}+\mathrm{Z}^{2}\right)$
$=\mathrm{z}(2 \mathrm{x}-\mathrm{z})\left(2 \mathrm{x}^{2}-2 \mathrm{xz}+\mathrm{z}^{2}\right)$
(v) $a^{4}-2 a^{2} b^{2}+b^{4}=\left(a^{2}\right)^{2}-2 a^{2} b^{2}+\left(b^{2}\right)^{2}$
$=\left(a^{2}-b^{2}\right)^{2}$
$=((a-b)(a+b))^{2}$
$=(\mathrm{a}-\mathrm{b})^{2}(\mathrm{a}+\mathrm{b})^{2}$
5. Factorise the following expressions.
(i) $p^{2}+6 p+8$
(ii) $\mathbf{q}^{2}-10 q+21$
(iii) $\mathbf{p}^{2}+6 p-16$

Solution:

(i) $\mathrm{p}^{2}+6 \mathrm{p}+8$

We observed that $8=4 \times 2$ and $4+2=6$
$p^{2}+6 p+8$ can be written as $p^{2}+2 p+4 p+8$
Taking Common terms, we get
$\mathrm{p}^{2}+6 \mathrm{p}+8=\mathrm{p}^{2}+2 \mathrm{p}+4 \mathrm{p}+8=\mathrm{p}(\mathrm{p}+2)+4(\mathrm{p}+2)$
Again, $\mathrm{p}+2$ is common in both the terms.
$=(\mathrm{p}+2)(\mathrm{p}+4)$
This implies that $\mathrm{p}^{2}+6 \mathrm{p}+8=(\mathrm{p}+2)(\mathrm{p}+4)$
(ii) $q^{2}-10 q+21$

We observed that $21=-7 \times-3$ and $-7+(-3)=-10$
$q^{2}-10 q+21=q^{2}-3 q-7 q+21$
$=q(q-3)-7(q-3)$
$=(\mathrm{q}-7)(\mathrm{q}-3)$
This implies that $\mathrm{q}^{2}-10 \mathrm{q}+21=(\mathrm{q}-7)(\mathrm{q}-3)$
(iii) $\mathrm{p}^{2}+6 \mathrm{p}-16$

We observed that $-16=-2 \times 8$ and $8+(-2)=6$
$p^{2}+6 p-16=p^{2}-2 p+8 p-16$
$=\mathrm{p}(\mathrm{p}-2)+8(\mathrm{p}-2)$
$=(\mathrm{p}+8)(\mathrm{p}-2)$
So, $\mathrm{p}^{2}+6 \mathrm{p}-16=(\mathrm{p}+8)(\mathrm{p}-2)$

