1. Find the common factors of the given terms.
(i) $12 \mathrm{x}, 36$
(ii) $2 \mathrm{y}, 22 \mathrm{xy}$
(iii) $\mathbf{1 4} \mathbf{p q}, \mathbf{2 8} \mathbf{p}^{2} \mathbf{q}^{2}$
(iv) $2 \mathrm{x}, 3 \mathrm{x}^{2}, 4$
(v) 6 abc, 24ab ${ }^{2}$, 12a²b
(vi) $16 \mathrm{x}^{3},-4 \mathrm{x}^{2}, 32 \mathrm{x}$
(vii) 10 pq, 20qr, 30 rp
(viii) $3 x^{2} y^{3}, 10 x^{3} y^{2}, 6 x^{2} y^{2} z$

Solution:

(i) Factors of 12x and 36
$12 \mathrm{x}=2 \times 2 \times 3 \times x$
$36=2 \times 2 \times 3 \times 3$
Common factors of 12 x and 36 are 2, 2, 3
and, $2 \times 2 \times 3=12$
(ii) Factors of $2 y$ and $22 x y$
$2 y=2 x y$
$22 x y=2 \times 11 \times x \times y$
Common factors of 2 y and 22 xy are $2, \mathrm{y}$
and, $2 x y=2 y$
(iii) Factors of $14 p q$ and $28 p^{2} q^{2}$
$14 \mathrm{pq}=2 \mathrm{x} 7 \mathrm{xpxq}$
$28 p^{2} q^{2}=2 \times 2 \times 7 \times p x p x q x q$
Common factors of 14 pq and $28 \mathrm{p}^{2} \mathrm{q}^{2}$ are $2,7, \mathrm{p}, \mathrm{q}$
and, $2 \times 7 \mathrm{xpxq}=14 \mathrm{pq}$
(iv) Factors of $2 x, 3 x^{2}$ and 4
$2 x=2 x x$
$3 x^{2}=3 \times x \times x$
$4=2 \times 2$
Common factors of $2 x, 3 x^{2}$ and 4 is 1 .
(v) Factors of $6 a b c, 24 a b^{2}$ and $12 a^{2} b$
$6 a b c=2 \times 3 \times a \times b \times c$
$24 \mathrm{ab}^{2}=2 \times 2 \times 2 \times 3 \times \mathrm{a} \times \mathrm{b} \times \mathrm{b}$
$12 a^{2} b=2 \times 2 \times 3 \times a \times a \times b$
Common factors of $6 \mathrm{abc}, 24 \mathrm{ab}^{2}$ and $12 \mathrm{a}^{2} \mathrm{~b}$ are $2,3, \mathrm{a}, \mathrm{b}$
and, $2 \times 3 \times a \times b=6 a b$
(vi) Factors of $16 x^{3},-4 x^{2}$ and $32 x$
$16 x^{3}=2 \times 2 \times 2 \times 2 \times x \times x \times x$
$-4 x^{2}=-1 \times 2 \times 2 \times x \times x$
$32 \mathrm{x}=2 \times 2 \times 2 \times 2 \times 2 \times x$
Common factors of $16 x^{3},-4 x^{2}$ and $32 x$ are $2,2, x$
and, $2 \times 2 \times x=4 x$
(vii) Factors of $10 \mathrm{pq}, 20 \mathrm{qr}$ and 30 rp
$10 \mathrm{pq}=2 \times 5 \times \mathrm{p} \times \mathrm{q}$
$20 \mathrm{qr}=2 \times 2 \times 5 \times \mathrm{q} \times \mathrm{r}$
$30 \mathrm{rp}=2 \times 3 \times 5 \times \mathrm{r} \times \mathrm{p}$
Common factors of $10 \mathrm{pq}, 20 \mathrm{qr}$ and 30 rp are 2, 5
and, $2 \times 5=10$
(viii) Factors of $3 x^{2} y^{3}, 10 x^{3} y^{2}$ and $6 x^{2} y^{2} z$
$3 x^{2} y^{3}=3 x x \times x \times y \times y \times y$
$10 x^{3} y^{2}=2 \times 5 \times x \times x \times x \times y \times y$
$6 x^{2} y^{2} z=3 \times 2 \times x \times x \times y \times y \times z$

Common factors of $3 x^{2} y^{3}, 10 x^{3} y^{2}$ and $6 x^{2} y^{2} z$ are x^{2}, y^{2}
and, $x^{2} \times y^{2}=x^{2} y^{2}$
2.Factorise the following expressions.
(i) $7 x-42$
(ii) $6 p-12 q$
(iii) $7 \mathbf{a}^{2}+\mathbf{1 4 a}$
(iv) $-16 z+20 z^{3}$
(v) 2012 $\mathrm{m}+30 \mathrm{alm}$
(vi) $5 x^{2} y-15 x y^{2}$
(vii) $10 a^{2}-15 b^{2}+20 c^{2}$
(viii) -4a²+4ab-4 ca
(ix) $x^{2} y z+x y^{2} z+x y z^{2}$
(x) $\mathbf{a x}^{2} y+b x y^{2}+\mathbf{c x y z}$

Solution:
(i) $7 x=7 \times x$
$42=2 \times 3 \times 7$
The common factor is 7
$\therefore 7 x-42=(7 \times x)-(2 \times 3 \times 7)=7(x-6)$
(ii) $6 p=2 \times 3 \times p$
$12 q=2 \times 2 \times 3 \times q$
The common factors are 2 and 3
$\therefore 6 p-12 q=(2 \times 3 \times p)-(2 \times 2 \times 3 \times q)$
$=2 \times 3[p-(2 \times q)]$
$=6(p-2 q)$
(iii) $7 a^{2}=7 \times a \times a$
$14 a=2 \times 7 \times a$
The common factors are 7 and a
$\therefore 7 a^{2}+14 a=(7 \times a \times a)+(2 \times 7 \times a)$
$=7 \times a[a+2]=7 a(a+2)$
(iv) $16==2 \times 2 \times 2 \times 2 \times z$
$20 z^{3}=2 \times 2 \times 5 \times z=\times z=$
The common factors are 2,2 , and 2 .
$\therefore-16 z+20 z^{3}=-(2 \times 2 \times 2 \times 2 \times z)+(2 \times 2 \times 5 \times=\times z \times z)$
$=(2 \times 2 \times=)[-(2 \times 2)+(5 \times 2 \times=)]$
$=4 z\left(-4+5 z^{2}\right)$
(v) $20 t^{2} \mathrm{~m}=2 \times 2 \times 5 \times 1 \times 1 \times m$
$30 \mathrm{alm}=2 \times 3 \times 5 \times a \times 1 \times m$
The common factors are $2,5, l$ and m
$\therefore 20 l^{2} m+30 \mathrm{alm}=(2 \times 2 \times 5 \times l \times l \times m)+(2 \times 3 \times 5 \times a \times l \times m)$
$=(2 \times 5 \times l \times m)[(2 \times l)+(3 \times a)]$
$=10 \operatorname{lm}(2 l+3 a)$
(vi) $5 x^{2} y=5 \times x \times x \times y$
$15 x y^{1}=3 \times 5 \times x \times y \times y$
The common factors are $5, x$, and y
$\therefore \quad 5 \mathrm{x}^{2} y-15 x y^{2}=(5 \times x \times x \times y)-(3 \times 5 \times x \times y \times y)$
$=5 \times x \times y[x-(3 \times y)]$
$=5 x y(x-3 y)$
(vii) $10 a^{2}-15 b^{2}+20 c^{2}$
$10 a^{2}=2 \times 5 \times a \times a$
$-15 b^{2}=-1 \times 3 \times 5 \times b \times b$
$20 c^{2}=2 \times 2 \times 5 \times c \times c$
Common factor of $10 a^{2}, 15 b^{2}$ and $20 c^{2}$ is 5
$10 a^{2}-15 b^{2}+20 c^{2}=5\left(2 a^{2}-3 b^{2}+4 c^{2}\right)$
(viii) $-4 a^{2}+4 a b-4 c a$
$-4 a^{2}=-1 \times 2 \times 2 \times a \times a$
$4 \mathrm{ab}=2 \times 2 \times \mathrm{a} \times \mathrm{b}$
$-4 c a=-1 \times 2 \times 2 \times c \times a$
Common factor of $-4 a^{2}, 4 \mathrm{ab},-4 \mathrm{ca}$ are 2, 2, a i.e. 4 a
So,
$-4 a^{2}+4 a b-4 c a=4 a(-a+b-c)$
(ix) $x^{2} y z+x y^{2} z+x y z^{2}$
$x^{2} y z=x \times x \times y \times z$
$x y^{2} z=x \times y \times y \times z$
$x y z^{2}=x \times y \times z \times z$
Common factor of $x^{2} y z, ~ x y^{2} z$ and $x y z^{2}$ are x, y, z i.e. $x y z$
Now, $x^{2} y z+x y^{2} z+x y z^{2}=x y z(x+y+z)$
(x) $a x^{2} y+b x y^{2}+c x y z$
$a x^{2} y=a \times x \times x \times y$
$b x y^{2}=b \times x \times y \times y$
$c x y z=c \times x \times y \times z$
Common factors of $a x^{2} y, b x y^{2}$ and cxyz are $x y$
Now, $a x^{2} y+b x y^{2}+c x y z=x y(a x+b y+c z)$
3. Factorise.
(i) $x^{2}+x y+8 x+8 y$
(ii) $15 x y-6 x+5 y-2$
(iii) ax+bx-ay-by
(iv) $15 p q+15+9 q+25 p$
(v) $z-7+7 x y-x y z$

Solution:
(i) $x^{2}+x y+8 x+8 y=x \times x+x \times y+8 \times x+8 \times y$
$=x(x+y)+8(x+y)$
$=(x+y)(x+8)$
(ii) $15 x y-6 x+5 y-2=3 \times 5 \times x \times y-3 \times 2 \times x+5 x y-2$
$=3 x(5 y-2)+1(5 y-2)$
$=(5 y-2)(3 x+1)$
(iii) $a x+b x-a y-b y=a \times x+b \times x-a \times y-b \times y$
$=x(a+b)-y(a+b)$
$=(a+b)(x-y)$
(iv) $15 p q+15+9 q+25 p=15 p q+9 q+25 p+15$
$=3 \times 5 \times p \times q+3 \times 3 \times q+5 \times 5 \times p+3 \times 5$
$=3 q(5 p+3)+5(5 p+3)$
$=(5 p+3)(3 q+5)$
(v) $z-7+7 x y-x y z=-x \times y \times z-7+7 \times x \times y$
$=z(1-x y)-7(1-x y)$
$=(1-x y)(z-7)$

EXERCISE 14.2

1. Factorise the following expressions.
(i) $a^{2}+8 a+16$
(ii) $\mathrm{p}^{2}-10 \mathrm{p}+25$
(iii) $\mathbf{2 5} \mathrm{m}^{2}+\mathbf{3 0 m}+\mathbf{9}$
(iv) $\mathbf{4 9} \mathrm{y}^{2}+84 \mathrm{yz}+36 \mathrm{z}^{2}$
(v) $4 x^{2}-8 x+4$
(vi) $121 b^{2}-88 b c+16 c^{2}$
(vii) $(1+m)^{2}-4 \operatorname{lm}$ (Hint: Expand ($\left.1+m\right)^{2}$ first)
(viii) $a^{4}+2 a^{2} b^{2}+b^{4}$

Solution:
(i) $a^{2}+8 a+16$
$=\mathrm{a}^{2}+2 \times 4 \times a+4^{2}$
$=(a+4)^{2}$
Using the identity $(\mathrm{x}+\mathrm{y})^{2}=\mathrm{x}^{2}+2 \mathrm{xy}+\mathrm{y}^{2}$
(ii) $\mathrm{p}^{2}-10 \mathrm{p}+25$
$=\mathrm{p}^{2}-2 \times 5 \times \mathrm{p}+5^{2}$
$=(\mathrm{p}-5)^{2}$
Using the identity $(x-y)^{2}=x^{2}-2 x y+y^{2}$
(iii) $25 m^{2}+30 m+9$
$=(5 \mathrm{~m})^{2}+2 \times 5 \mathrm{~m} \times 3+3^{2}$
$=(5 m+3)^{2}$
Using the identity $(\mathrm{x}+\mathrm{y})^{2}=\mathrm{x}^{2}+2 \mathrm{xy}+\mathrm{y}^{2}$
(iv) $49 y^{2}+84 y z+36 z^{2}$
$=(7 y)^{2}+2 \times 7 y \times 6 z+(6 z)^{2}$
$=(7 y+6 z)^{2}$

Using the identity $(x+y)^{2}=x^{2}+2 x y+y^{2}$
(v) $4 x^{2}-8 x+4$
$=(2 \mathrm{x})^{2}-2 \times 4 \mathrm{x}+2^{2}$
$=(2 \mathrm{x}-2)^{2}$
Using the identity $(x-y)^{2}=x^{2}-2 x y+y^{2}$
(vi) $121 b^{2}-88 b c+16 c^{2}$
$=(11 b)^{2}-2 \times 11 b \times 4 c+(4 c)^{2}$
$=(11 \mathrm{~b}-4 \mathrm{c})^{2}$
Using the identity $(x-y)^{2}=x^{2}-2 x y+y^{2}$
(vii) $(1+m)^{2}-41 m$ (Hint: Expand (l+m) ${ }^{2}$ first)

Expand $(1+m)^{2}$ using the identity $(x+y)^{2}=x^{2}+2 x y+y^{2}$
$(1+m)^{2}-41 m=l^{2}+m^{2}+2 l m-41 m$
$=l^{2}+m^{2}-2 l m$
$=(1-\mathrm{m})^{2}$
Using the identity $(x-y)^{2}=x^{2}-2 x y+y^{2}$
(viii) $a^{4}+2 a^{2} b^{2}+b^{4}$
$=\left(a^{2}\right)^{2}+2 \times a^{2 \times} b^{2}+\left(b^{2}\right)^{2}$
$=\left(a^{2}+b^{2}\right)^{2}$
Using the identity $(x+y)^{2}=x^{2}+2 x y+y^{2}$
2. Factorise.
(i) $4 \mathbf{p}^{2}-9 \mathbf{q}^{2}$
(ii) $63 a^{2}-112 b^{2}$
(iii) $49 \mathrm{x}^{2}-36$
(iv) $16 x^{5}-144 x^{3}$ differ
(v) $(\mathbf{l}+\mathrm{m})^{2}-(\mathrm{l}-\mathrm{m})^{2}$
(vi) $9 x^{2} y^{2}-16$
(vii) $\left(\mathbf{x}^{2}-2 x y+y^{2}\right)-Z^{2}$
(viii) $\mathbf{2 5} \mathbf{a}^{2}-\mathbf{4 b} b^{2}+28 b c-49 c^{2}$

Solution:

(i) $4 p^{2}-9 q^{2}$
$=(2 \mathrm{p})^{2}-(3 \mathrm{q})^{2}$
$=(2 p-3 q)(2 p+3 q)$
Using the identity $\mathrm{x}^{2}-\mathrm{y}^{2}=(\mathrm{x}+\mathrm{y})(\mathrm{x}-\mathrm{y})$
(ii) $63 a^{2}-112 b^{2}$
$=7\left(9 a^{2}-16 b^{2}\right)$
$=7\left((3 \mathrm{a})^{2}-(4 \mathrm{~b})^{2}\right)$
$=7(3 a+4 b)(3 a-4 b)$
Using the identity $\mathrm{x}^{2}-\mathrm{y}^{2}=(\mathrm{x}+\mathrm{y})(\mathrm{x}-\mathrm{y})$
(iii) $49 x^{2}-36$
$=(7 \mathrm{x})^{2}-6^{2}$
$=(7 \mathrm{x}+6)(7 \mathrm{x}-6)$
Using the identity $\mathrm{x}^{2}-\mathrm{y}^{2}=(\mathrm{x}+\mathrm{y})(\mathrm{x}-\mathrm{y})$
(iv) $16 x^{5}-144 x^{3}$
$=16 \mathrm{x}^{3}\left(\mathrm{x}^{2}-9\right)$
$=16 x^{3}\left(x^{2}-9\right)$
$=16 \mathrm{x}^{3}(\mathrm{x}-3)(\mathrm{x}+3)$
Using the identity $\mathrm{x}^{2}-\mathrm{y}^{2}=(\mathrm{x}+\mathrm{y})(\mathrm{x}-\mathrm{y})$
(v) $(1+m)^{2}-(1-m)^{2}$
$=\{(1+\mathrm{m})-(1-\mathrm{m})\}\{(1+\mathrm{m})+(1-\mathrm{m})\}$
Using the identity $\mathrm{x}^{2}-\mathrm{y}^{2}=(\mathrm{x}+\mathrm{y})(\mathrm{x}-\mathrm{y})$
$=(1+\mathrm{m}-\mathrm{l}+\mathrm{m})(1+\mathrm{m}+\mathrm{l}-\mathrm{m})$
$=(2 \mathrm{~m})(2 \mathrm{l})$
$=4 \mathrm{ml}$
(vi) $9 x^{2} y^{2}-16$
$=(3 x y)^{2}-4^{2}$
$=(3 x y-4)(3 x y+4)$
Using the identity $\mathrm{x}^{2}-\mathrm{y}^{2}=(\mathrm{x}+\mathrm{y})(\mathrm{x}-\mathrm{y})$
(vii) $\left(x^{2}-2 x y+y^{2}\right)-z^{2}$
$=(\mathrm{x}-\mathrm{y})^{2}-\mathrm{Z}^{2}$
Using the identity $(x-y)^{2}=x^{2}-2 x y+y^{2}$
$=\{(\mathrm{x}-\mathrm{y})-\mathrm{z}\}\{(\mathrm{x}-\mathrm{y})+\mathrm{z}\}$
$=(\mathrm{x}-\mathrm{y}-\mathrm{z})(\mathrm{x}-\mathrm{y}+\mathrm{z})$
Using the identity $x^{2}-y^{2}=(x+y)(x-y)$
(viii) $25 a^{2}-4 b^{2}+28 b c-49 c^{2}$
$=25 \mathrm{a}^{2}-\left(4 \mathrm{~b}^{2}-28 \mathrm{bc}+49 \mathrm{c}^{2}\right)$
$=(5 a)^{2}-\left\{(2 b)^{2}-2(2 b)(7 c)+(7 c)^{2}\right\}$
$=(5 a)^{2}-(2 b-7 c)^{2}$
Using the identity $x^{2}-y^{2}=(x+y)(x-y)$, we have
$=(5 \mathrm{a}+2 \mathrm{~b}-7 \mathrm{c})(5 \mathrm{a}-2 \mathrm{~b}+7 \mathrm{c})$
3. Factorise the expressions.
(i) $\mathbf{a x ^ { 2 }}+\mathbf{b x}$
(ii) $\mathbf{7} \mathbf{p}^{2}+\mathbf{2 1} \mathbf{q}^{2}$
(iii) $2 \mathrm{x}^{3}+2 \mathrm{xy}^{2}+2 \mathrm{xz}^{2}$
(iv) $\mathbf{a m}^{2}+\mathbf{b m}^{2}+\mathbf{b n}^{2}+\mathbf{a n}^{2}$
(v) $(\mathbf{l m}+\mathbf{l})+\mathbf{m}+\mathbf{1}$
(vi) $\mathbf{y}(\mathrm{y}+\mathrm{z})+9(\mathrm{y}+\mathrm{z})$
(vii) $5 y^{2}-20 y-8 z+2 y z$
(viii) $10 a b+4 a+5 b+2$
(ix) $6 x y-4 y+6-9 x$

Solution:

(i) $a x^{2}+b x=x(a x+b)$
(ii) $7 \mathrm{p}^{2}+21 \mathrm{q}^{2}=7\left(\mathrm{p}^{2}+3 \mathrm{q}^{2}\right)$
(iii) $2 x^{3}+2 x y^{2}+2 x z^{2}=2 x\left(x^{2}+y^{2}+z^{2}\right)$
(iv) $a m^{2}+b m^{2}+b n^{2}+a n^{2}=m^{2}(a+b)+n^{2}(a+b)=(a+b)\left(m^{2}+n^{2}\right)$
(v) $(\mathrm{lm}+1)+\mathrm{m}+1=1 \mathrm{~m}+\mathrm{m}+1+1=\mathrm{m}(1+1)+(1+1)=(m+1)(1+1)$
(vi) $y(y+z)+9(y+z)=(y+9)(y+z)$
(vii) $5 y^{2}-20 y-8 z+2 y z=5 y(y-4)+2 z(y-4)=(y-4)(5 y+2 z)$
(viii) $10 \mathrm{ab}+4 \mathrm{a}+5 \mathrm{~b}+2=5 \mathrm{~b}(2 \mathrm{a}+1)+2(2 \mathrm{a}+1)=(2 \mathrm{a}+1)(5 \mathrm{~b}+2)$
(ix) $6 x y-4 y+6-9 x=6 x y-9 x-4 y+6=3 x(2 y-3)-2(2 y-3)=(2 y-3)(3 x-2)$
4.Factorise.
(i) $\mathbf{a}^{4}-\mathbf{b}^{4}$
(ii) $\mathrm{p}^{4}-81$
(iii) $\mathbf{x}^{4}-(\mathbf{y}+\mathrm{z})^{4}$
(iv) $\mathbf{x}^{4}-(\mathbf{x}-\mathbf{z})^{4}$
(v) $\mathbf{a}^{4}-\mathbf{2} \mathbf{a}^{2} \mathbf{b}^{2}+\mathbf{b}^{4}$

Solution:

(i) $a^{4}-b^{4}$
$=\left(a^{2}\right)^{2}-\left(b^{2}\right)^{2}$
$=\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)$
$=(a-b)(a+b)\left(a^{2}+b^{2}\right)$
(ii) $\mathrm{p}^{4}-81$
$=\left(p^{2}\right)^{2}-(9)^{2}$
$=\left(p^{2}-9\right)\left(\mathrm{p}^{2}+9\right)$
$=\left(\mathrm{p}^{2}-3^{2}\right)\left(\mathrm{p}^{2}+9\right)$
$=(p-3)(p+3)\left(p^{2}+9\right)$
(iii) $x^{4}-(y+z)^{4}=\left(x^{2}\right)^{2}-\left[(y+z)^{2}\right]^{2}$
$=\left\{\mathrm{x}^{2}-(\mathrm{y}+\mathrm{z})^{2}\right\}\left\{\mathrm{x}^{2}+(\mathrm{y}+\mathrm{z})^{2}\right\}$
$=\left\{\left(\mathrm{x}-(\mathrm{y}+\mathrm{z})(\mathrm{x}+(\mathrm{y}+\mathrm{z})\}\left\{\mathrm{x}^{2}+(\mathrm{y}+\mathrm{z})^{2}\right\}\right.\right.$
$=(\mathrm{x}-\mathrm{y}-\mathrm{z})(\mathrm{x}+\mathrm{y}+\mathrm{z})\left\{\mathrm{x}^{2}+(\mathrm{y}+\mathrm{z})^{2}\right\}$
(iv) $\mathrm{x}^{4}-(\mathrm{x}-\mathrm{z})^{4}=\left(\mathrm{x}^{2}\right)^{2}-\left\{(\mathrm{x}-\mathrm{z})^{2}\right\}^{2}$
$=\left\{\mathrm{X}^{2}-(\mathrm{x}-\mathrm{Z})^{2}\right\}\left\{\mathrm{X}^{2}+(\mathrm{x}-\mathrm{Z})^{2}\right\}$
$=\{\mathrm{x}-(\mathrm{x}-\mathrm{z})\}\{\mathrm{x}+(\mathrm{x}-\mathrm{z})\}\left\{\mathrm{x}^{2}+(\mathrm{x}-\mathrm{z})^{2}\right\}$
$=\mathrm{z}(2 \mathrm{x}-\mathrm{z})\left(\mathrm{X}^{2}+\mathrm{X}^{2}-2 \mathrm{xz}+\mathrm{Z}^{2}\right)$
$=\mathrm{z}(2 \mathrm{x}-\mathrm{z})\left(2 \mathrm{x}^{2}-2 \mathrm{xz}+\mathrm{z}^{2}\right)$
(v) $a^{4}-2 a^{2} b^{2}+b^{4}=\left(a^{2}\right)^{2}-2 a^{2} b^{2}+\left(b^{2}\right)^{2}$
$=\left(a^{2}-b^{2}\right)^{2}$
$=((a-b)(a+b))^{2}$
$=(\mathrm{a}-\mathrm{b})^{2}(\mathrm{a}+\mathrm{b})^{2}$
5. Factorise the following expressions.
(i) $p^{2}+6 p+8$
(ii) $\mathbf{q}^{2}-10 q+21$
(iii) $\mathbf{p}^{2}+6 p-16$

Solution:

(i) $\mathrm{p}^{2}+6 \mathrm{p}+8$

We observed that $8=4 \times 2$ and $4+2=6$
$p^{2}+6 p+8$ can be written as $p^{2}+2 p+4 p+8$
Taking Common terms, we get
$\mathrm{p}^{2}+6 \mathrm{p}+8=\mathrm{p}^{2}+2 \mathrm{p}+4 \mathrm{p}+8=\mathrm{p}(\mathrm{p}+2)+4(\mathrm{p}+2)$
Again, $\mathrm{p}+2$ is common in both the terms.
$=(\mathrm{p}+2)(\mathrm{p}+4)$
This implies that $\mathrm{p}^{2}+6 \mathrm{p}+8=(\mathrm{p}+2)(\mathrm{p}+4)$
(ii) $q^{2}-10 q+21$

We observed that $21=-7 \times-3$ and $-7+(-3)=-10$
$q^{2}-10 q+21=q^{2}-3 q-7 q+21$
$=q(q-3)-7(q-3)$
$=(\mathrm{q}-7)(\mathrm{q}-3)$
This implies that $\mathrm{q}^{2}-10 \mathrm{q}+21=(\mathrm{q}-7)(\mathrm{q}-3)$
(iii) $\mathrm{p}^{2}+6 \mathrm{p}-16$

We observed that $-16=-2 \times 8$ and $8+(-2)=6$
$p^{2}+6 p-16=p^{2}-2 p+8 p-16$
$=\mathrm{p}(\mathrm{p}-2)+8(\mathrm{p}-2)$
$=(\mathrm{p}+8)(\mathrm{p}-2)$
So, $\mathrm{p}^{2}+6 \mathrm{p}-16=(\mathrm{p}+8)(\mathrm{p}-2)$

EXERCISE 14.3

1. Carry out the following divisions.
(i) $28 x^{4} \div 56 x$
(ii) $-36 y^{3} \div 9 y^{2}$
(iii) $\mathbf{6} 6 \mathrm{pq}^{2} \mathrm{r}^{3} \div 11 \mathrm{qr}^{2}$
(iv) $34 x^{3} y^{3} z^{3} \div 51 x^{2} z^{3}$
(v) $12 a^{8} b^{8} \div\left(-6 a^{6} b^{4}\right)$

Solution:

(i) $28 \mathrm{x}^{4}=2 \times 2 \times 7 \times \mathrm{x} \times \mathrm{x} \times \mathrm{x} \times \mathrm{x}$
$56 \mathrm{x}=2 \times 2 \times 2 \times 7 \times x$

$$
28 \mathrm{x}^{4} \div 56 \mathrm{x}=\frac{2 \times 2 \times 7 \times \mathrm{x} \times \mathrm{x} \times \mathrm{x} \times \mathrm{x}}{2 \times 2 \times 2 \times 7 \times \mathrm{x}}=\frac{x^{3}}{2}=\frac{1}{2} x^{3}
$$

(ii) $-36 y^{3} \div 9 y^{2}=\frac{-2 \times 2 \times 3 \times 3 \times y \times y \times y}{3 \times 3 \times y \times y}=-4 y$
(iii) $66 \mathrm{pq}^{2} \mathrm{r}^{3} \div 11 \mathrm{qr}^{2}=\frac{2 \times 3 \times 11 \times p \times q \times q \times r \times r \times r}{11 \times q \times r \times r}=6 \mathrm{pqr}$
(iv) $34 \mathrm{x}^{3} \mathrm{y}^{3} z^{3} \div 51 \mathrm{xy}^{2} \mathrm{z}^{3}=\frac{2 \times 17 \times x \times x \times x \times y \times y \times y \times z \times z \times z}{3 \times 17 \times x \times y \times y \times z \times z \times z}=\frac{2}{3} \mathrm{x}^{2} \mathrm{y}$
(v) $12 \mathrm{a}^{8} \mathrm{~b}^{8} \div\left(-6 \mathrm{a}^{6} \mathrm{~b}^{4}\right)=\frac{2 \times 2 \times 3 \times a^{8} \times b^{8}}{-2 \times 3 \times a^{6} \times b^{4}}=-2 \mathrm{a}^{2} \mathrm{~b}^{4}$
2. Divide the given polynomial by the given monomial.
(i) $\left(5 x^{2}-6 x\right) \div 3 x$
(ii) $\left(3 y^{8}-4 y^{6}+5 y^{4}\right) \div y^{4}$
(iii) $\mathbf{8}\left(\mathbf{x}^{3} \mathbf{y}^{2} \mathbf{z}^{2}+x^{2} y^{3} \mathbf{z}^{2}+x^{2} \mathbf{y}^{2} \mathbf{z}^{3}\right) \div \mathbf{4} \mathbf{x}^{2} \mathbf{y}^{2} \mathbf{z}^{2}$
(iv) $\left(x^{3}+2 x^{2}+3 x\right) \div 2 x$
(v) $\left(\mathbf{p}^{3} \mathbf{q}^{6}-\mathbf{p}^{6} \mathbf{q}^{3}\right) \div \mathbf{p}^{3} \mathbf{q}^{3}$

Solution:

(i) $5 x^{2}-6 x=x(5 x-6)$
$\left(5 x^{2}-6 x\right) \div 3 x=\frac{x(5 x-6)}{3 x}=\frac{1}{3}(5 x-6)$
(ii) $3 y^{2}-4 y^{4}+5 y^{4}=y^{4}\left(3 y^{4}-4 y^{2}+5\right)$
$\left(3 y^{4}-4 y^{0}+5 y^{4}\right) \div y^{4}=\frac{y^{4}\left(3 y^{4}-4 y^{2}+5\right)}{y^{4}}=3 y^{4}-4 y^{2}+5$
(iii) $8\left(x^{3} y^{2} z^{2}+x^{2} y^{3} z^{2}+x^{2} y^{2} z^{3}\right)=8 x^{2} y^{2} z^{2}(x+y+z)$
$8\left(x^{3} y^{2} z^{2}+x^{2} y^{3} z^{2}+x^{2} y^{2} z^{3}\right)+4 x^{2} y^{2} z^{2}=\frac{8 x^{2} y^{2} z^{2}(x+y+z)}{4 x^{2} y^{2} z^{2}}=2(x+y+z)$
(iv) $x^{3}+2 x^{2}+3 x=x\left(x^{2}+2 x+3\right)$
$\left(x^{3}+2 x^{2}+3 x\right) \div 2 x=\frac{x\left(x^{3}+2 x^{2}+3\right)}{2 x}=\frac{1}{2}\left(x^{2}+2 x+3\right)$
(v) $p^{3} q^{6}-p^{6} q^{3}=p^{3} q^{3}\left(q^{3}-p^{3}\right)$
$\left(p^{3} q^{6}-p^{4} q^{3}\right)+p^{3} q^{3}=\frac{p^{3} q^{3}\left(q^{3}-p^{3}\right)}{p^{3} q^{3}}=q^{3}-p^{3}$
3. Work out the following divisions.
(i) $(10 x-25) \div 5$
(ii) $(10 x-25) \div(2 x-5)$
(iii) $10 y(6 y+21) \div 5(2 y+7)$
(iv) $9 x^{2} y^{2}(3 z-24) \div 27 x y(z-8)$
(v) 96abc $(3 a-12)(5 b-30) \div 144(a-4)(b-6)$

Solution:

(i) $(10 x-25) \div 5=5(2 x-5) / 5=2 x-5$
(ii) $(10 x-25) \div(2 x-5)=5(2 x-5) /(2 x-5)=5$
(iii) $10 y(6 y+21) \div 5(2 y+7)=10 y \times 3(2 y+7) / 5(2 y+7)=6 y$
(iv) $9 x^{2} y^{2}(3 z-24) \div 27 x y(z-8)=9 x^{2} y^{2} \times 3(z-8) / 27 x y(z-8)=x y$
(v) $96 a b c(3 a-12)(5 b-30) \div 144(a-4)(b-6)=\frac{96 a b c \times 3(a-4) \times 5(b-6)}{144(a-4)(b-6)}=10 a b c$
4. Divide as directed.
(i) $5(2 x+1)(3 x+5) \div(2 x+1)$
(ii) $26 x y(x+5)(y-4) \div 13 x(y-4)$
(iii) $52 \mathrm{pqr}(\mathrm{p}+\mathrm{q})(\mathrm{q}+\mathrm{r})(\mathrm{r}+\mathrm{p}) \div 104 \mathrm{pq}(\mathrm{q}+\mathrm{r})(\mathrm{r}+\mathrm{p})$
(iv) $20(y+4)\left(y^{2}+5 y+3\right) \div 5(y+4)$
(v) $x(x+1)(x+2)(x+3) \div x(x+1)$

Solution:

$$
\text { (i) } \begin{aligned}
5(2 x+1)(3 x+5) \div(2 x+1)= & \frac{5(2 x+1)(3 x+5)}{(2 x+1)} \\
& =5(3 x+5)
\end{aligned}
$$

(ii) $26 x y(x+5)(y-4) \div 13 x(y-4)=\frac{2 \times 13 \times x y(x+5)(y-4}{13 x(y-4)}$

$$
=2 y(x+5)
$$

(iii) $52 p q r(p+q)(q+r)(r+p) \div 104 p q(q+r)(r+p)$
$=\frac{2 \times 2 \times 13 \times p \times q \times r \times(p+q) \times(q+r) \times(r+p)}{2 \times 2 \times 2 \times 13 \times p \times q \times(q+r) \times(r+p)}$
$=\frac{1}{2} r(p+q)$
(iv) $20(y+4)\left(y^{2}+5 y+3\right)=2 \times 2 \times 5 \times(y+4)\left(y^{2}+5 y+3\right)$
$20(y+4)\left(y^{2}+5 y+3\right) \div 5(y+4)=\frac{2 \times 2 \times 5 \times(y+4) \times\left(y^{2}+5 y+3\right)}{5 \times(y+4)}$

$$
=4\left(y^{2}+5 y+3\right)
$$

(v) $x(x+1)(x+2)(x+3) \div x(x+1)=\frac{x(x+1)(x+2)(x+3)}{x(x+1)}$
$=(x+2)(x+3)$
5. Factorise the expressions and divide them as directed.
(i) $\left(y^{2}+7 y+10\right) \div(y+5)$
(ii) $\left(m^{2}-14 m-32\right) \div(m+2)$
(iii) $\left(5 p^{2}-25 p+20\right) \div(p-1)$
(iv) $4 y z\left(z^{2}+6 z-16\right) \div 2 y(z+8)$
(v) $\mathbf{5 p q}\left(\mathbf{p}^{2}-\mathbf{q}^{2}\right) \div \mathbf{2 p}(\mathbf{p}+q)$
(vi) $12 x y\left(9 x^{2}-16 y^{2}\right) \div 4 x y(3 x+4 y)$
(vii) $39 y^{3}\left(50 y^{2}-98\right) \div 26 y^{2}(5 y+7)$

Solution:

(i) $\left(y^{2}+7 y+10\right) \div(y+5)$

First, solve the equation $\left(y^{2}+7 y+10\right)$
$\left(y^{2}+7 y+10\right)=y^{2}+2 y+5 y+10=y(y+2)+5(y+2)=(y+2)(y+5)$
Now, $\left(y^{2}+7 y+10\right) \div(y+5)=(y+2)(y+5) /(y+5)=y+2$
(ii) $\left(\mathrm{m}^{2}-14 \mathrm{~m}-32\right) \div(\mathrm{m}+2)$

Solve for $\mathrm{m}^{2}-14 \mathrm{~m}-32$, we have
$\mathrm{m}^{2}-14 \mathrm{~m}-32=\mathrm{m}^{2}+2 \mathrm{~m}-16 \mathrm{~m}-32=\mathrm{m}(\mathrm{m}+2)-16(\mathrm{~m}+2)=(\mathrm{m}-16)(\mathrm{m}+2)$
Now, $\left(m^{2}-14 m-32\right) \div(m+2)=(m-16)(m+2) /(m+2)=m-16$
(iii) $\left(5 p^{2}-25 p+20\right) \div(p-1)$

Step 1: Take 5 common from the equation, $5 p^{2}-25 p+20$, we get
$5 \mathrm{p}^{2}-25 \mathrm{p}+20=5\left(\mathrm{p}^{2}-5 \mathrm{p}+4\right)$
Step 2: Factorise $p^{2}-5 p+4$
$\mathrm{p}^{2}-5 \mathrm{p}+4=\mathrm{p}^{2}-\mathrm{p}-4 \mathrm{p}+4=(\mathrm{p}-1)(\mathrm{p}-4)$
Step 3: Solve original equation
$\left(5 \mathrm{p}^{2}-25 \mathrm{p}+20\right) \div(\mathrm{p}-1)=5(\mathrm{p}-1)(\mathrm{p}-4) /(\mathrm{p}-1)=5(\mathrm{p}-4)$
(iv) $4 y z\left(z^{2}+6 z-16\right) \div 2 y(z+8)$

Factorising $\mathrm{z}^{2}+6 \mathrm{z}-16$,
$z^{2}+6 z-16=z^{2}-2 z+8 z-16=(z-2)(z+8)$
Now, $4 y z\left(z^{2}+6 z-16\right) \div 2 y(z+8)=4 y z(z-2)(z+8) / 2 y(z+8)=2 z(z-2)$
(v) $\mathbf{5 p q}\left(\mathrm{p}^{2}-\mathrm{q}^{2}\right) \div \mathbf{2 p}(\mathrm{p}+\mathrm{q})$
$\mathrm{p}^{2}-\mathrm{q}^{2}$ can be written as $(\mathrm{p}-\mathrm{q})(\mathrm{p}+\mathrm{q})$ using the identity.
$5 \mathrm{pq}\left(\mathrm{p}^{2}-\mathrm{q}^{2}\right) \div 2 \mathrm{p}(\mathrm{p}+\mathrm{q})=5 \mathrm{pq}(\mathrm{p}-\mathrm{q})(\mathrm{p}+\mathrm{q}) / 2 \mathrm{p}(\mathrm{p}+\mathrm{q})=5 \mathrm{q}(\mathrm{p}-\mathrm{q}) / 2$
(vi) $12 x y\left(9 x^{2}-16 y^{2}\right) \div 4 x y(3 x+4 y)$

Factorising $9 x^{2}-16 y^{2}$, we have
$9 x^{2}-16 y^{2}=(3 x)^{2}-(4 y)^{2}=(3 x+4 y)(3 x-4 y)$ using the identity $p^{2}-q^{2}=(p-q)(p+q)$
Now, $12 x y\left(9 x^{2}-16 y^{2}\right) \div 4 x y(3 x+4 y)=12 x y(3 x+4 y)(3 x-4 y) / 4 x y(3 x+4 y)=3(3 x-4 y)$
(vii) $39 \mathrm{y}^{3}\left(50 \mathrm{y}^{2}-98\right) \div 26 \mathrm{y}^{2}(5 \mathrm{y}+7)$
st solve for $50 y^{2}-98$, we have
$50 \mathrm{y}^{2}-98=2\left(25 \mathrm{y}^{2}-49\right)=2\left((5 \mathrm{y})^{2}-7^{2}\right)=2(5 \mathrm{y}-7)(5 \mathrm{y}+7)$
Now, $39 y^{3}\left(50 y^{2}-98\right) \div 26 y^{2}(5 y+7)=$
$\frac{3 \times 13 \times y^{3} \times 2(5 y-7)(5 y+7)}{2 \times 13 \times y^{2}(5 y+7)}=3 y(5 y-7)$

EXERCISE 14.4

1. $4(x-5)=4 x-5$

Solution:
$4(x-5)=4 x-20 \neq 4 x-5=$ RHS
The correct statement is $4(x-5)=4 x-20$
2. $x(3 x+2)=3 x^{2}+2$

Solution:

LHS $=x(3 x+2)=3 x^{2}+2 x \neq 3 x^{2}+2=$ RHS
The correct solution is $x(3 x+2)=3 x^{2}+2 x$
3. $2 x+3 y=5 x y$

Solution:
LHS $=2 x+3 y \neq$ R. H. S
The correct statement is $2 x+3 y=2 x+3 y$
4. $x+2 x+3 x=5 x$

Solution:

LHS $=x+2 x+3 x=6 x \neq$ RHS
The correct statement is $x+2 x+3 x=6 x$
5. $5 y+2 y+y-7 y=0$

Solution:
LHS $=5 y+2 y+y-7 y=y \neq$ RHS
The correct statement is $5 y+2 y+y-7 y=y$
6. $3 x+2 x=5 x^{2}$

Solution:
LHS $=3 x+2 x=5 x \neq$ RHS
The correct statement is $3 x+2 x=5 x$
7. $(2 x)^{2}+4(2 x)+7=2 x^{2}+8 x+7$

Solution:

LHS $=(2 x)^{2}+4(2 x)+7=4 x^{2}+8 x+7 \neq$ RHS
The correct statement is $(2 x)^{2}+4(2 x)+7=4 x^{2}+8 x+7$
8. $(2 x)^{2}+5 x=4 x+5 x=9 x$

Solution:

LHS $=(2 x)^{2}+5 x=4 x^{2}+5 x \neq 9 x=$ RHS
The correct statement is $(2 x)^{2}+5 x=4 x^{2}+5 x$
9. $(3 x+2)^{2}=3 x^{2}+6 x+4$

Solution:

LHS $=(3 x+2)^{2}=(3 x)^{2}+2^{2}+2 x 2 \times 3 x=9 x^{2}+4+12 x \neq$ RHS
The correct statement is $(3 x+2)^{2}=9 x^{2}+4+12 x$
10. Substituting $x=-3$ in
(a) $x^{2}+5 x+4$ gives $(-3)^{2}+5(-3)+4=9+2+4=15$
(b) $x^{2}-5 x+4$ gives $(-3)^{2}-5(-3)+4=9-15+4=-2$
(c) $x^{2}+5 x$ gives $(-3)^{2}+5(-3)=-9-15=-24$

Solution:

(a) Substituting $x=-3$ in $x^{2}+5 x+4$, we have
$x^{2}+5 x+4=(-3)^{2}+5(-3)+4=9-15+4=-2$. This is the correct answer.
(b) Substituting $x=-3$ in $x^{2}-5 x+4$
$x^{2}-5 x+4=(-3)^{2}-5(-3)+4=9+15+4=28$. This is the correct answer
(c) Substituting $x=-3$ in $x^{2}+5 x$
$x^{2}+5 x=(-3)^{2}+5(-3)=9-15=-6$. This is the correct answer
11. $(\mathrm{y}-3)^{2}=\mathrm{y}^{2}-9$

Solution:

LHS $=(\mathrm{y}-3)^{2}$, which is similar to $(\mathrm{a}-\mathrm{b})^{2}$ identity, where $(\mathrm{a}-\mathrm{b})^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{ab}$
$(y-3)^{2}=y^{2}+(3)^{2}-2 y \times 3=y^{2}+9-6 y \neq y^{2}-9=$ RHS
The correct statement is $(y-3)^{2}=y^{2}+9-6 y$
12. $(\mathrm{z}+5)^{2}=\mathrm{z}^{2}+25$

Solution:

LHS $=(z+5)^{2}$, which is similar to $(a+b)^{2}$ identity, where $(a+b)^{2}=a^{2}+b^{2}+2 a b$
$(\mathrm{z}+5)^{2}=\mathrm{z}^{2}+5^{2}+2 \times 5 \times \mathrm{z}=\mathrm{z}^{2}+25+10 \mathrm{z} \neq \mathrm{z}^{2}+25=$ RHS
The correct statement is $(\mathrm{z}+5)^{2}=\mathrm{z}^{2}+25+10 \mathrm{z}$
13. $(2 a+3 b)(a-b)=2 a^{2}-3 b^{2}$

Solution:

LHS $=(2 \mathrm{a}+3 \mathrm{~b})(\mathrm{a}-\mathrm{b})=2 \mathrm{a}(\mathrm{a}-\mathrm{b})+3 \mathrm{~b}(\mathrm{a}-\mathrm{b})$
$=2 a^{2}-2 a b+3 a b-3 b^{2}$
$=2 a^{2}+a b-3 b^{2}$
$\neq 2 \mathrm{a}^{2}-3 \mathrm{~b}^{2}=$ RHS
The correct statement is $(2 a+3 b)(a-b)=2 a^{2}+a b-3 b^{2}$
14. $(a+4)(a+2)=a^{2}+8$

Solution:
LHS $=(a+4)(a+2)=a(a+2)+4(a+2)$
$=\mathrm{a}^{2}+2 \mathrm{a}+4 \mathrm{a}+8$
$=a^{2}+6 a+8$
$\neq \mathrm{a}^{2}+8=$ RHS
The correct statement is $(a+4)(a+2)=a^{2}+6 a+8$
15. $(\mathbf{a}-4)(\mathbf{a}-2)=\mathbf{a}^{2}-8$

Solution:
LHS $=(\mathrm{a}-4)(\mathrm{a}-2)=\mathrm{a}(\mathrm{a}-2)-4(\mathrm{a}-2)$
$=a^{2}-2 a-4 a+8$
$=a^{2}-6 a+8$
$\neq \mathrm{a}^{2}-8=$ RHS

The correct statement is $(a-4)(a-2)=a^{2}-6 a+8$
16. $3 x^{2} / 3 x^{2}=0$

Solution:

LHS $=3 x^{2} / 3 x^{2}=1 \neq 0=$ RHS
The correct statement is $3 x^{2} / 3 x^{2}=1$
17. $\left(3 x^{2}+1\right) / 3 x^{2}=1+1=2$

Solution:

LHS $=\left(3 x^{2}+1\right) / 3 x^{2}=\left(3 x^{2} / 3 x^{2}\right)+\left(1 / 3 x^{2}\right)=1+\left(1 / 3 x^{2}\right) \neq 2=$ RHS
The correct statement is $\left(3 x^{2}+1\right) / 3 x^{2}=1+\left(1 / 3 x^{2}\right)$
18. $3 \mathrm{x} /(3 \mathrm{x}+2)=1 / 2$

Solution:
LHS $=3 x /(3 x+2) \neq 1 / 2=$ RHS
The correct statement is $3 \mathrm{x} /(3 \mathrm{x}+2)=3 \mathrm{x} /(3 \mathrm{x}+2)$
19. $3 /(4 \mathrm{x}+3)=1 / 4 \mathrm{x}$

Solution:
LHS $=3 /(4 x+3) \neq 1 / 4 x$
The correct statement is $3 /(4 x+3)=3 /(4 x+3)$
20. $(4 x+5) / 4 x=5$

Solution:

LHS $=(4 x+5) / 4 x=4 x / 4 x+5 / 4 x=1+5 / 4 x \neq 5=$ RHS
The correct statement is $(4 \mathrm{x}+5) / 4 \mathrm{x}=1+(5 / 4 \mathrm{x})$

21. $\frac{7 x+5}{5}=7 x$

Solution:
LHS $=(7 x+5) / 5=(7 x / 5)+5 / 5=(7 x / 5)+1 \neq 7 x=$ RHS
The correct statement is $(7 x+5) / 5=(7 x / 5)+1$

