EXERCISE 16.1

Find the values of the letters in each of the following and give reasons for the steps involved.
1.

3
+2
2
B $\quad 2$

Solution:

Say, $A=7$, and we get
$7+5=12$
In which one's place is 2 .
Therefore, $\mathrm{A}=7$
And putting 2 and carrying over 1 , we get
$B=6$
Hence, $\mathbf{A}=7$ and $\mathbf{B}=\mathbf{6}$.
2.

Solution:

If $\mathrm{A}=5$, we get
$8+5=13$, in which one's place is 3.
Therefore, $\mathrm{A}=5$ and carry over 1 , then
$\mathrm{B}=4$ and $\mathrm{C}=1$
Hence, $\mathrm{A}=\mathbf{5}, \mathrm{B}=4$ and $\mathrm{C}=1$.
3.

1 A
$\times \quad \mathrm{A}$

9 A

Solution:

On putting $\mathrm{A}=1,2,3,4,5,6,7$ and so on, we get
$A x A=6 \times 6=36$, in which one's place is 6 .
Therefore, $\mathbf{A}=\mathbf{6}$
4.

A
+3
6

Solution:

Here, we observe that $B=5$, so that $7+5=12$
Putting 2 at one's place and carrying over 1 and $\mathrm{A}=2$, we get
$2+3+1=6$
Hence, $\mathbf{A}=\mathbf{2}$ and $\mathbf{B}=\mathbf{5}$.
5.

Solution:

Here, on putting $\mathrm{B}=0$, we get $0 \times 3=0$.
And $\mathrm{A}=5$, then $5 \times 3=15$
$\mathrm{A}=5$ and $\mathrm{C}=1$
Hence $\mathbf{A}=\mathbf{5}, \mathbf{B}=\mathbf{0}$ and $\mathbf{C}=\mathbf{1}$.
6.

Solution:

On putting $\mathrm{B}=0$, we get $0 \times 5=0$ and $\mathrm{A}=5$, then $5 \times 5=25$
$\mathrm{A}=5, \mathrm{C}=2$
Hence $\mathrm{A}=\mathbf{5}, \mathrm{B}=\mathbf{0}$ and $\mathrm{C}=\mathbf{2}$
7.

Solution:

Here, products of B and 6 must be the same as one's place digit is B.
$6 \times 1=6,6 \times 2=12,6 \times 3=18,6 \times 4=24$
On putting $B=4$, we get the one's digit 4 , and the remaining two B 's value should be 44 .
Therefore, for $6 \times 7=42+2=44$
Hence, $A=7$ and $B=4$.
8.

Solution:

On putting $B=9$, we get $9+1=10$
Putting 0 at ones place and carrying over 1 , we get $\mathrm{A}=7$
$7+1+1=9$
Hence, $\mathbf{A}=7$ and $\mathbf{B}=9$.
9.

$2 \mathrm{~A} \quad \mathrm{~B}$
$+\mathrm{A} \quad \mathrm{B} \quad 1$
B

Solution:

On putting $B=7$, we get $7+1=8$
Now $A=4$, then $4+7=11$
Putting 1 at tens place and carrying over 1 , we get
$2+4+1=7$
Hence, $\mathbf{A}=4$ and $\mathbf{B}=7$.
10.

A 09

Solution:

Putting $\mathrm{A}=8$ and $\mathrm{B}=1$, we get
$8+1=9$
Now, again we add $2+8=10$
The tens place digit is ' 0 ' and carries over 1 . Now $1+6+1=8=\mathrm{A}$
Hence, $\mathrm{A}=\mathbf{8}$ and $\mathrm{B}=\mathbf{1}$.

EXERCISE 16.2

1. If $21 y 5$ is a multiple of 9 , where y is a digit, what is the value of y ?

Solution:

Suppose 21 y 5 is a multiple of 9 .
Therefore, according to the divisibility rule of 9 , the sum of all the digits should be a multiple of 9 .
That is, $2+1+y+5=8+y$
Therefore, $8+y$ is a factor of 9 .
This is possible when $8+y$ is any one of these numbers $0,9,18,27$, and so on
However, since y is a single-digit number, this sum can be only 9 .
Therefore, the value of y should be 1 only, i.e. $8+\mathrm{y}=8+1=9$.
2. If $31 \mathrm{z5}$ is a multiple of 9 , where z is a digit, what is the value of z ? You will find that there are two answers to the last problem. Why is this so?

Solution:

Since 31 z 5 is a multiple of 9 ,
According to the divisibility rule of 9 , the sum of all the digits should be a multiple of 9 .

$$
3+1+z+5=9+z
$$

Therefore, $9+z$ is a multiple of 9
This is only possible when $9+z$ is any one of these numbers: $0,9,18,27$, and so on.

This implies, $9+0=9$ and $9+9=18$
Hence, 0 and 9 are the two possible answers.
3. If $24 x$ is a multiple of 3 , where x is a digit, what is the value of x ?
(Since $24 x$ is a multiple of 3 , its sum of digits $6+x$ is a multiple of 3 , so $6+x$ is one of these numbers: $0,3,6,9,12$, $15,18, \ldots$. But since x is a digit, it can only be that $6+x=6$ or 9 or 12 or 15 . Therefore, $x=0$ or 3 or 6 or 9 . Thus, x can have any of four different values.)

Solution:

Let's say $24 x$ is a multiple of 3 .
Then, according to the divisibility rule of 3 , the sum of all the digits should be a multiple of 3 .
$2+4+x=6+x$

So, $6+\mathrm{x}$ is a multiple of 3 , and $6+\mathrm{x}$ is one of the numbers: $0,3,6,9,12,15,18$ and so on.
Since x is a digit, the value of x will be either 0 or 3 or 6 or 9 , and the sum of the digits can be 6 or 9 or 12 or 15, respectively.

Thus, x can have any of the four different values: 0 or 3 or 6 or 9 .
4. If 31 z 5 is a multiple of 3 , where z is a digit, what might be the values of z ?

Solution:

Since 31 z 5 is a multiple of 3 ,
According to the divisibility rule of 3 , the sum of all the digits should be a multiple of 3 .
That is, $3+1+z+5=9+z$
Therefore, $9+\mathrm{z}$ is a multiple of 3 .
This is possible when the value of $9+z$ is any of the values: $0,3,6,9,12,15$, and so on.
At $\mathrm{z}=0,9+\mathrm{z}=9+0=9$
At $\mathrm{z}=3,9+\mathrm{z}=9+3=12$
At $\mathrm{z}=6,9+\mathrm{z}=9+6=15$
At $z=9,9+z=9+9=18$
The value of $9+z$ can be 9 or 12 or 15 or 18.
Hence $0,3,6$ or 9 are the four possible answers for z .

